Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T02:13:47.277Z Has data issue: false hasContentIssue false

Radiocarbon-Dated Paleoenvironmental Changes on a Lake and Peat Sediment Sequence from the Central Great Hungarian Plain (Central Europe) During the Last 25,000 Years

Published online by Cambridge University Press:  18 July 2016

Pál Sümegi*
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary. Archaeological Institute of the Hungarian Academy of Sciences, 1014 Budapest úri u. 49, Hungary.
Mihály Molnár
Affiliation:
Laboratory of Environmental Studies, Institute of Nuclear Research of the Hungarian Academy of Sciences, 4025 Debrecen Bem tér 18/C, Hungary.
Gusztáv Jakab
Affiliation:
Tessedik Sámuel College 5540 Szarvas Szabadság str. 2, Hungary.
Gergo Persaits
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary.
Péter Majkut
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary.
Dávid G Páll
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary.
Sándor Gulyás
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary.
A J Timothy Jull
Affiliation:
NSF Arizona AMS Laboratory, University of Arizona, 1118 East Fourth St., Tucson, Arizona 85721, USA.
Tünde Törcsik
Affiliation:
University of Szeged, Department of Geology and Paleontology, P.O. Box 658, 6701 Szeged, Hungary.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of Hungary's geological and environmental treasures is nestled in the heart of the Great Hungarian Plain. The catchment basin of Lake Kolon was subjected to detailed environmental historical studies starting in 2005. Undisturbed cores taken along transects of the basin were subjected to detailed sedimentological, paleoecological, and geochemical studies. To establish a reliable timeframe of the lacustrine and marshland sedimentary sequence identified, 22 samples were analyzed by accelerator mass spectrometry (AMS) in the radiocarbon laboratories of Poznań and Tucson. With the new results in hand, we had the opportunity to elucidate the geological evolution of the area for the past 25,000 yr. This sequence is highly beneficial, as it is probably the most well-dated profile of the Quaternary from the area studied. The new absolute dates enabled the comparison of local geological evolution of the studied area with those of global climatic changes. As seen from our findings, the geological evolution of the catchment basin was congruent with major climatic events during the Pleistocene and the entire Holocene. However, a very peculiar trajectory was identified for the terminal part of the Pleistocene and the opening of the Holocene regarding the evolution of the landscape, the vegetation, and the fauna of this part of the Great Hungarian Plain.

Type
Soils and Sediments
Copyright
Copyright © 2011 The Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Aaby, B, Digerfeldt, G. 1986. Sampling techniques for lakes and bogs. In: Berglund, BE, editor. Handbook of Holocene Paleoecology and Paleohydrology. Chichester: John Wiley & Sons. p 181–94.Google Scholar
Alon, D, Mintz, G, Cohen, I, Weiner, S, Boaretto, E. 2002. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal; quality control for 14C dating of charcoal. Radiocarbon 44(1):111.CrossRefGoogle Scholar
Ant, H. 1963. Faunistische, ökologische und tiergeographische Untersuchungen zur Verbreitung der Landschnecken in Nordwestdeutschland. Abhandlungen des Landesmuseums für Naturkunde [Münster] 25:125.Google Scholar
Bába, K. 1983. A Szatmár-Beregi sík szárazföldi csigái és a környezetükre levonható következtetések. Acta Academiae Paedagogienis. Szeged: Series Biologica-Geographica 12. p 2741.Google Scholar
Bába, K. 1986. Magyarország szárazföldi csigáinak állatföldrajzi besorolásához felhasznált faj-area térképek. II. Folia Musei Historico-Naturalis Musei Matraensis 11:4969.Google Scholar
Barber, KE, Chambers, FM, Maddy, D, Brew, JS. 1994. A sensitive high-resolution record of the Holocene climatic change from a raised bog in northern England. The Holocene 4(2):198205.Google Scholar
Bennett, KD. 1992. PSIMPOLL—A quickBASIC program that generates PostScript page description files of pollen diagrams. INQUA Commission for the Study of the Holocene: Working Group on Data Handling Methods, Newsletter 8:1112.Google Scholar
Berglund, BE. 2003. Human impact and climate changes—syncronous events and a causal link? Quaternary International 105(1):712.Google Scholar
Birks, HJB, Birks, HH. 1980. Quaternary Palaeoecology. Baltimore: University Park Press. 289 p.Google Scholar
Boycott, AE. 1934. The habitats of land Mollusca in Britain. Journal of Animal Ecology 22(1):138.CrossRefGoogle Scholar
Cameron, RAD, Redfern, M. 1976. British Land Snails. London: Academic Press. 62 p.Google Scholar
Casagrande, A. 1934. Die Aerometer-Methode zur Bestimmung der Kornverteilung von Böden und anderer Materialien. Berlin. 250 p.CrossRefGoogle Scholar
Dániel, P. 2004. Methods of the five-step extraction method. In: Sümegi, P, Gulyás, S, editors. The Geohistory of Bátorliget Marshland. Budapest: Archeolingua. p 53–6.Google Scholar
Dean, WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Petrology 44(1):242–8.Google Scholar
Deli, Gy. 1989. Az izsáki Kolon-tó és növénytársulásai. Kecskemét: Aqua Press. 31 p.Google Scholar
Ehrmann, P. 1933. Weichtiere, Mollusca. Tierwelt Mitteleuropas II. Leipzig: Quelle-Meyer. 264 p.Google Scholar
Evans, JG. 1972. Land Snails in Archaeology. London: Seminar Press. 436 p.Google Scholar
Fall, PL. 1987. Pollen taphonomy in a canyon stream. Quaternary Research 28(3):393406.CrossRefGoogle Scholar
Hatté, C, Morvan, J, Noury, C, Martine, P. 2001. Is classical acid-alkali-acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43(2A):177–82.CrossRefGoogle Scholar
Jacobson, GL Jr, Bradshaw, RHW. 1981. The selection of sites for paleovegetational studies. Quaternary Research 16(1):8096.CrossRefGoogle Scholar
Jakab, G, Sümegi, P. 2004. A lágyszárú növények tzegben található maradványainak határozója mikroszkópikus bélyegek alapján. Kitaibelia 9(1):93129.Google Scholar
Jakab, G, Sümegi, P, Magyari, E. 2004. A new paleobotanical method for the description of Late Quaternary organic sediments (mire-development pathways and palaeoclimatic records from S Hungary). Acta Geologica Hungarica 47(4):137.CrossRefGoogle Scholar
Jowsey, PC. 1966. An improved peat sampler. New Phytologist 65(2):245–8.CrossRefGoogle Scholar
Kerney, MP, Cameron, RAD, Jungbluth, JH. 1983. Die Landschnecken Nord- und Mitteleuropas. Berlin: P Parey. 384 p.Google Scholar
Keveiné, BI, Szebellédi, T, Bíró, Cs. 2004. Tájváltozások a Kolon-tó környékén. Földtani Kutatás 41:3540.Google Scholar
Klemm, W. 1974. Die Verbeitung der rezenten Land-Gehause-Schnecken in Österreich. Denkschriften der Österreichischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche 117:1513.Google Scholar
Krolopp, E. 1983. Biostratigraphic division of Hungarian Pleistocene formations according to their mollusc fauna. Acta Geologica Hungarica 26:6289.Google Scholar
Krolopp, E, Sümegi, P. 1992. A magyarországi löszök képzdésének paleökológiai rekonstruckiója Mollusca fauna alapján. In: Szór, Gy, editor. Fáciesanalitikai, paleobiogeokémiai és paleoökológiai kutatások. Debrecen: MTA Debreceni Akadémiai Bizottság. p 247–63.Google Scholar
Krolopp, E, Sümegi, P. 1995. Palaeoecological reconstruction of the Late Pleistocene, based on Loess malacofauna in Hungary. GeoJournal 36:213–22.CrossRefGoogle Scholar
Kun, A, Máté, A. 2002. A Kiskunsági Nemzeti Park ex lege láp nyilvántartásba vett egyes turján-vidéki területeinek botanikai állapotfelmérése. Méntelek [unpublished research report]. p 6581.Google Scholar
Likharev, IM, Rammelmeier, ES. 1964. Nazémnimi molluskami na CCCP. Moscow: Akademia Nauka CCCP. 574 p.Google Scholar
Lozek, V. 1964. Quartärmollusken der Tschechoslowakei. Prague: Rozpravy Ústredniho ústavu geologického 31. 374 p.Google Scholar
Maher, LJ Jr. 1972. Nomograms for computing 0.95 confidence limits of pollen data. Review of Paleobotany and Palynology 13(2):8593.CrossRefGoogle Scholar
Meier, T. 1985. The pre-Weichselian nonmarine molluscan fauna from Maastricht-Belvédere (southern Limburg, the Netherlands). Mededelingen Rijks Geologische Dienst 39:75103.Google Scholar
Miháltz, I. 1953. A Duna-Tisza köze déli részének földtani felvétele. MÁFI Jelentése 1950-rl:113–44.Google Scholar
Molnár, B. 1961. A Duna-Tisza-közi eolikus rétegek felszíni és felszínalatti kiterjedése. Földtani Közlöny 91:303–15.Google Scholar
Molnár, B. 2004. A Duna-Tisza közi hátság negyedidszak végi fejldéstörtenete. Földtani Kutatás 41:2635.Google Scholar
Molnár, B, Iványosi Szabó, A, Fényes, J. 1979. A Kolon-tó kialakulása és limnogeológiai fejldése. Hidrológiai Közlöny 12:549–59.Google Scholar
Molnár, Z, Vajda, Z. 2000. A Duna-Tisza köze élhely térképezése. Vácrátót-Kecskemét: Aqua Press. 31 p.Google Scholar
Oklan, J. 1990. Lakes and Snails. Environment and Gastropoda in 1500 Norwegian Lakes, Ponds and Rivers. Oegstgeest: Backhuys Publishers.Google Scholar
Oldfield, F. 1977. Lakes and their drainage basin as units of sediment-based ecological study. Progress in Physical Geography 1(3):460504.CrossRefGoogle Scholar
Soós, L. 1943. A Kárpát-medence Mollusca faunája. Budapest: Akadémiai Kiadó. 478 p.Google Scholar
Soós, L. 1955. Puhatestek. In: Székessy, A, editor. Fauna Hungariae. Budapest: Akadémiai Kiadó. 19.1: p 132; 19.2: p 1–80; 19.3: p 1–158.Google Scholar
Sparks, BW. 1961. The ecological interpretation of Quaternary non-marine Mollusca. Proceedings of the Linnean Society of London 172:7180.CrossRefGoogle Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–21.Google Scholar
Sümegi, P. 1989. A Hajdúság fels-pleisztocén fejldéstörténete finomrétegtani (slénytani, szedimentológiai, geokémiai) vizsgálatok alapján [PhD dissertation]. Debrecen: Kossuth University. 96 p.Google Scholar
Sümegi, P. 2003. A régészeti geológia és a történeti ökológiai alapjai. Szeged: JATE Press. 215 p.Google Scholar
Sümegi, P. 2007. Magyarország negyedidszak végi környezettörténete. Szeged-Budapest: MTA Doktori Értekezés. 343 p.Google Scholar
Sümegi, P, Krolopp, E. 1996. A magyarországi Würm korú löszök képzdésének paleoökológiai rekonstrukciója Mollusca fauna alapján. Földtani Közlöny 124:125–48.Google Scholar
Suumegi, P, Magyari, E, Daniel, P, Hertelendi, E, Rudner, E. 1999. A kardoskúti Fehér-tó negyedidszaki fejldéstörténetének rekonstrukciója. Földtani Közlöny 129:479519.Google Scholar
Troels-Smith, J. 1955. Karakterisering af lose jordater [Characterization of unconsolidated sediments]. Danmarks Geologiske Undersogelse series IV(10):5563.Google Scholar
Weninger, B, Jöris, O, Danzeglocke, U. 2008. CalPal-2007. Cologne radiocarbon calibration & palaeoclimate research package. http://www.calpal.de/.Google Scholar