Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T19:25:26.941Z Has data issue: false hasContentIssue false

Radiocarbon Wiggle Matching on Laminated Sediments Delivers High-Precision Chronologies

Published online by Cambridge University Press:  06 June 2018

Fabian Rey*
Affiliation:
Institute of Plant Sciences (IPS), University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
Erika Gobet
Affiliation:
Institute of Plant Sciences (IPS), University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
Sönke Szidat
Affiliation:
Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland Department of Chemistry and Biochemistry (DCB), University of Bern, Bern, Switzerland
André F Lotter
Affiliation:
Institute of Plant Sciences (IPS), University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
Adrian Gilli
Affiliation:
Department of Earth Sciences (D-ERDW), ETH Zurich, Zurich, Switzerland
Albert Hafner
Affiliation:
Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland Institute of Archaeological Sciences (IAW), University of Bern, Bern, Switzerland
Willy Tinner
Affiliation:
Institute of Plant Sciences (IPS), University of Bern, Bern, Switzerland Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
*
*Corresponding author. Email: [email protected].

Abstract

High-resolution sediment chronologies with the best possible time control are essential for comparing palaeoecological studies with independent high-precision climatic, archaeological or historic data in order to disentangle causes and effects of past environmental, ecological and societal change. We present two varved lake sediment sequences from Moossee and Burgäschisee (Swiss Plateau) that have chronologies developed with Bayesian models and radiocarbon (14C) dating of terrestrial plant macrofossils extracted from sediment samples with constant age ranges. We illustrate the potential of high-resolution 14C dating for the construction of robust, high-precision sediment chronologies. The mean 2σ age uncertainties were reduced to±19 cal yr for Moossee and to±54 cal yr for Burgäschisee over the entire period of 3000 cal yr, while 2σ uncertainties of only±13 cal yr and±18 cal yr respectively, were achieved for shorter time intervals. These precisions are better than or comparable to those of previous varve studies. Our results imply that a sophisticated subsampling strategy and a careful selection of short-lived and well-defined terrestrial plant remains are crucial to avoid outlying 14C ages. A direct linkage between palaeoeological studies with dendrochronologically dated, local archaeological sites as well as a precise comparison with high-resolution climate proxy data have become feasible.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnekow, L, Possert, G, Sandgren, P. 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. GFF 120:5967.Google Scholar
Beug, H-J. 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Pfeil.Google Scholar
Blaauw, M. 2010. Methods and code for ‘classical’ age-modeling of radiocarbon sequences. Quaternary Geochronology 5:512518.Google Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457474.Google Scholar
Birks, HJB. 1997. Reconstructing environmental impacts of fire from the Holocene sedimentary record. In: Clark JS, Cachier H, Goldammer JG, Stocks BJ, editors. Sediment records of biomass burning and global change. Berlin: Springer. p 295311.Google Scholar
Björck, S, Wohlfahrt, B. 2001. 14C chronostratigraphic techniques in paleolimnology. In: Last WM, Smol JP, editors. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Kluwer. p 204245.Google Scholar
Bonk, A, Tylmann, W, Goslar, T, Wacnik, A, Grosjean, M. 2015. Comparing varve counting and 14C-AMS chronologies in the sediments of Lake Żabińskie, Northeastern Poland: implications for accurate 14C dating of lake sediments. Geochronometria 42(1):159171.Google Scholar
Bronk Ramsey, C. 1994. Analysis of chronological information and radiocarbon calibration: the program OxCal. Archaeological Computing Newsletter 41:1116.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43(2A):355363.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381389.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1-2):4260.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2-3):720730.Google Scholar
Brugger, SO, Gobet, E, van Leeuwen, JFN, Ledru, M-P, Colombaroli, D, van der Knaap, WO, Lombardo, U, Escobar-Torrez, K, Finsinger, W, Rodrigues, L, Giesche, A, Zarate, M, Veit, H, Tinner, W. 2016. Long-term man−environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quaternary Science Reviews 132:114128.Google Scholar
Butz, C, Grosjean, M, Fischer, D, Wunderle, S, Tylmann, W, Rein, B. 2015. Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. Journal of Applied Remote Sensing 9(1):096031.Google Scholar
Carcaillet, C, Blarquez, O. 2017. Fire ecology of a tree glacial refugium on a nunatak with a view on Alpine glaciers. New Phytologist 216(4):12811290.Google Scholar
Davies, SJ, Lamb, HF, Roberts, SJ. 2015. Micro-XRF core scanning in palaeolimnology: recent developments in paleoenvironmental research. In: Croudace IW, Rothwell RG, editors. Micro-XRF Studies of Sediment Cores Applications of a Non-Destructive Tool for the Environmental Sciences. Dordrecht: Springer. p 189226.Google Scholar
Dörfler, W, Feeser, I, van den Bogaard, C, Dreibrodt, S, Erlenkeuser, H, Kleinmann, A, Merkt, J, Wiethold, J. 2012. A high-quality annually laminated sequence from Lake Belau, Northern Germany: revised chronology and its implications for palynological and tephrochronological studies. The Holocene 22(12):14131426.Google Scholar
Dräger, N, Theuerkauf, M, Szeroczyńska, K, Wulf, S, Tjallingii, R, Plessen, B, Kienel, U, Brauer, A. 2017. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See (NE Germany). The Holocene 27(3):450464.Google Scholar
Feeser, I, Dörfler, W, Czymzik, M, Dreibrodt, S. 2016. A mid-Holocene annually laminated sediment sequence from Lake Woserin: the role of climate and environmental change for cultural development during the Neolithic in northern Germany. The Holocene 26(6):947963.Google Scholar
Finsinger, W, Schwörer, C, Heiri, O, Morales-Molino, C, Ribolini, A, Giesecke, T, Haas, JN, Kaltenrieder, P, Magyari, EK, Ravazzi, C, Rubiales, JM, Tinner, W. Fire on ice and frozen trees? Inappropriate radiocarbon dating leads to unrealistic reconstructions. New Phytologist, accepted.Google Scholar
Francus, P. 1998. An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments. Sedimentary Geology 121(3−4):289298.Google Scholar
Gavin, DG. 2001. Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43(1):2744.Google Scholar
Gobet, E, Tinner, W, Hochuli, PA, van Leeuwen, JFN, Ammann, B. 2003. Middle to Late Holocene vegetation history in the Upper Engadine (Swiss Alps): the role of man and fire. Vegetation History and Archaeobotany 12(3):143163.Google Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Różánski, K, Tisnerat, N, Walanus, A, Wicik, B, Wiȩckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas. Nature 377:414417.Google Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, N, Hatté, C, Paterne, M, Ralska-Jasiewiczowa, M. 2000. Radiocarbon calibration by means of varves versus 14C ages of terrestrial macrofossils from Lake Gościąż and Lake Perespilno, Poland. Radiocarbon 42(3):335348.Google Scholar
Goslar, T, van der Knaap, WO, Hicks, S, Andric, M, Czernik, J, Goslar, E, Rasanen, S, Hyotyla, H. 2005. 14C dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47(1):115134.Google Scholar
Guthruf, J, Zeh, M, Guthruf-Seiler, K. 1999. Kleinseen im Kanton Bern. Bern: Haupt.Google Scholar
Hafner, A, Suter, PJ. 2000. 3400 v. Chr. Die Entwicklung der Bauerngesellschaften im 4. Jahrtausend v. Chr. am Bielersee aufgrund Rettungsgrabungen von Nidau und Sutz-Lattrigen. Bern: Haupt.Google Scholar
Hajdas, I, Zolitschka, B, Ivy-Ochs, SD, Beer, J, Bonani, G, Leroy, SAG, Negendank, JW, Ramrath, M, Suter, M. 1995. AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14(2):137143.Google Scholar
Hajdas, I, Michczyński, A. 2010. Age-depth model of Lake Soppensee (Switzerland) based on the high-resolution 14C chronology compared with varve chronology. Radiocarbon 52(3):10271040.Google Scholar
Heegaard, E, Birks, HJB, Telford, RJ. 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15(4):612618.Google Scholar
Haschke, M, Scholz, W, Theis, U, Nicolosi, J, Scruggs, B, Herzceg, L. 2002. Description of a new Micro-XRay spectrometer. Journal De Physique IV France 12(6):8396.Google Scholar
Ilyashuk, B, Gobet, E, Heiri, O, Lotter, AF, van Leeuwen, JFN, van der Knaap, WO, Ilyashuk, E, Oberli, F, Ammann, B. 2009. Lateglacial environmental and climatic changes at the Maloja Pass, Central Swiss Alps, as recorded by chironomids and pollen. Quaternary Science Reviews 28(13−14):13401353.Google Scholar
Kleinmann, A, Merkt, J, Müller, H. 2015. Sedimente des Degersees: Ein Umweltarchiv – Sedimentologie und Palynologie. In: Mainberger M, Merkt J, Kleinmann A, editors. Pfahlbausiedlungen am Degersee, Archäologische und naturwissenschaftliche Untersuchungen. Darmstadt: Theiss. p 409471.Google Scholar
Lamoureux, SF. 2001. Varve chronology techniques. In: Last WM, Smol JP, editors. Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Kluwer. p 247260.Google Scholar
Lauber, K, Wagner, G, Gygax, A. 2014. Flora Helvetica. Bern: Haupt.Google Scholar
Lauterbach, S, Brauer, A, Andersen, N, Danielopol, DL, Dulski, P, Hüls, M, Milecka, K, Namiotko, T, Obremska, M, von Grafenstein, U. 2011. Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). Journal of Quaternary Science 26(3):253267.Google Scholar
Lotter, AF. 1989. Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquatic Sciences 51(1):1930.Google Scholar
Lotter, AF, Birks, HJB. 1997. The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquatic Sciences 59(4):362375.Google Scholar
Lotter, AF. 1999. Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetation History and Archaeobotany 8(3):165184.Google Scholar
Lotter, AF, Lemcke, G. 1999. Methods for preparing and counting biochemical varves. Boreas 28:243252.Google Scholar
Marty, J, Myrbo, A. 2014. Radiocarbon dating suitability of aquatic plant macrofossil. Journal of Paleolimnology 52(4):435443.Google Scholar
Mellström, A, Muscheler, R, Snowball, I, Ning, W, Haltia, E. 2013. Radiocarbon wiggle-match dating of bulk sediments − how accurate can it be? Radiocarbon 55(2−3):11731186.Google Scholar
Mellström, A, Nilsson, A, Stanton, T, Muscheler, R, Snowball, I, Suttie, N. 2015. Post-depositional remanent magnetization lock-in depth in precisely dated varved sediments assessed by archaeo-magnetic field models. Earth and Planetary Science Letters 410:186196.Google Scholar
Monchamp, M-E, Walser, J-C, Pomati, F, Spaak, P. 2016. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Applied and Environmental Microbiology 82(21):64726482.Google Scholar
Moore, PD, Webb, JA, Collison, ME. 1991. Pollen Analysis. Oxford: Blackwell Scientific Publications.Google Scholar
Oswald, WW, Anderson, PM, Brown, TA, Brubaker, LB, Hu, FS, Lozhkin, AV, Tinner, W, Kaltenrieder, P. 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15(5):758767.Google Scholar
Prasad, S, Baier, J. 2014. Tracking the impact of mid- to late Holocene climate change and anthropogenic activities on Lake Holzmaar using an updated Holocene chronology. Global and Planetary Change 122:251264.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rey, F, Schwörer, C, Gobet, E, Colombaroli, D, van Leeuwen, JFN, Schleiss, S, Tinner, W. 2013. Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. The Holocene 23(10):14151427.Google Scholar
Rey, F. 2017. Exploring eight millennia of climatic, vegetational and agricultural dynamics on the Swiss Plateau by using annually layered sedimentary time series [dissertation]. University of Bern.Google Scholar
Rey, F, Gobet, E, van Leeuwen, JFN, Gilli, A, van Raden, UJ, Hafner, A, Wey, O, Rhiner, J, Schmocker, D, Zünd, J, Tinner, W. 2017. Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments. Vegetation History and Archaeobotany 26(6):571586.Google Scholar
Schwörer, C, Colombaroli, D, Kaltenrieder, P, Rey, F, Tinner, W. 2015. Early human impact (5000−3000 BC) affects mountain forest dynamics in the Alps. Journal of Ecology 103(2):281295.Google Scholar
Snowball, I, Muscheler, R, Zillén, L, Sandgren, P, Stanton, T, Ljung, K. 2010. Radiocarbon wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2 kyr cold event. Boreas 39(4):720733.Google Scholar
Stevens, LR, Ito, E, Olson, DEL. 2000. Relationship of Mn-carbonates in varved lake-sediments to catchment vegetation in Big Watab Lake, MN, USA. Journal of Paleolimnology 24(2):199211.Google Scholar
Stöckli, WE. 2016. Urgeschichte der Schweiz im Überblick (15,000 v. Chr. – Christi Geburt) – Die Konstruktion einer Urgeschichte. Basel: Veröffentlichung der Archäologie Schweiz.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Reimer, P. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215230.Google Scholar
Swierczynski, T, Lauterbach, S, Dulski, P, Delgado, J, Merz, B, Brauer, A. 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews 80:7890.Google Scholar
Szidat, S, Salazar, GA, Vogel, E, Battaglia, M, Wacker, L, Synal, H-A, Türler, A. 2014. 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56(2):561566.Google Scholar
Tinner, W, Hubschmid, P, Wehrli, M, Ammann, B, Conedera, M. 1999. Long-term forest fire ecology and dynamics in Southern Switzerland. Journal of Ecology 87(2):273289.Google Scholar
Tinner, W, Lotter, AF, Ammann, B, Conedera, M, Hubschmid, P, van Leeuwen, JFN, Wehrli, M. 2003. Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quaternary Science Reviews 22(14):14471460.Google Scholar
Van Raden, UJ. 2012. High-resolution Swiss lake records of climate change. Diss. ETH No. 20596, ETH Zurich.Google Scholar
Welten, M. 1944. Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Zürich: Veröffentlichungen des Geobotanischen Instituts Rübel.Google Scholar
Wey, O. 2012. Die Cortaillod-Kultur am Burgäschisee: Materialvorlage und Synthese zu den neolithischen Fundkomplexen von Burgäschisee-Ost, -Südwest, -Süd, und –Nord. Bern: Stämpfli.Google Scholar
Wohlfahrt, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13(2):137145.Google Scholar
Zolitschka, B, Negendank, JFW. 1996. Sedimentology, dating and palaeoclimatic interpretation of a 76.3 ka record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 15(2−3):101112.Google Scholar
Zolitschka, B, Brauer, A, Negendank, JFW, Stockhausen, H, Lang, A. 2000. Annually dated late Weichselian continental paleoclimate record from the Eifel, Germany. Geology 8(9):783786.Google Scholar
Zolitschka, B, Francus, P, Ojala, AEK, Schimmelmann, A. 2015. Varves in lake sediments − a review. Quaternary Science Reviews 117:141.Google Scholar
Supplementary material: File

Rey et al. supplementary material

Rey et al. supplementary material 1

Download Rey et al. supplementary material(File)
File 20.5 MB
Supplementary material: File

Rey et al. supplementary material

Rey et al. supplementary material 2

Download Rey et al. supplementary material(File)
File 16 KB
Supplementary material: File

Rey et al. supplementary material

Rey et al. supplementary material 3

Download Rey et al. supplementary material(File)
File 12.2 KB