Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T21:57:23.092Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Mortar from the Aqueduct in Skopje

Published online by Cambridge University Press:  17 June 2019

Andreja Sironić*
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, Zagreb, Croatia
Damir Borković
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, Zagreb, Croatia
Jadranka Barešić
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, Zagreb, Croatia
Ines Krajcar Bronić
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, Zagreb, Croatia
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Ljiljana Kitanovska
Affiliation:
National Institution Conservation Centre, Skopje, R Macedonia
Vjekoslav Štrukil
Affiliation:
Ruđer Bošković Institute, Bijenička c 54, Zagreb, Croatia
Lidija Robeva Čukovska
Affiliation:
NI National Conservation Centre – Central Chemical Laboratory, Skopje, R. North Macedonia
*
*Corresponding author. Email: [email protected].

Abstract

The Aqueduct is one of the city landmarks of Skopje, Republic of North Macedonia. It was part of a water-supply system, with a total original length of about 10 km, while its surface remains are about 385 m long. The age of the Aqueduct is not known—several hypotheses place it to periods between the 6th and 16th centuries. Six mortar samples from different positions of the eastern façade were taken for radiocarbon (14C) dating. In order to extract only the carbon associated to the time of building, three strategies for sample preparation were used: (1) mechanical separation of lime lumps formed during mortar hardening (2) selection on the basis of particle size and the ability to suspend in water induced by ultrasonic shock, and (3) collection of two gas CO2 fractions produced from the same bulk in reaction with acid. Characterization of fractions was performed by isotopic carbon composition and FTIR-ATR analyses. The most plausible results were obtained from lime lump fractions that were dated in the timeframe of 15th to 17th century.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Ambers, J. 1987. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars. Journal of Archaeological Science 14:569576.CrossRefGoogle Scholar
Balabanov, K, Kikolovski, A, Kornakov, D. 1980. Spomenici na kulturata na Makedonija [Monuments of culture in Macedonia]. Skopje, Macedonia: Misla. p. 197. In Macedonian.Google Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 2016. The OxCal program v 4.2. The Oxford Radiocarbon Accelerator Unit, University of Oxford. Available at: https://c14.arch.ox.ac.uk/oxcal/OxCal.html.Google Scholar
Bronk Ramsey, C. 2017. OxCal v4.3.2 r:5. The Oxford Radiocarbon Accelerator Unit, University of Oxford. Available at: https://c14.arch.ox.ac.uk/oxcal/OxCal.html.Google Scholar
Carmine, L, Caroselli, M, Lugli, S, Marzaioli, F, Nonni, S, Marchetti, S, Dori, M, Terrasi, F. 2015. AMS radiocarbon dating of mortar: the case study of the medieval UNESCO site of Modena. Nuclear Instruments and Methods in Physics Research B 361:614619.CrossRefGoogle Scholar
Chu, V, Regev, L, Weiner, S, Boaretto, E. 2008. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. Journal of Archaeological Science 35:905911.CrossRefGoogle Scholar
Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.Google Scholar
Fabbri, B, Gualtieri, S, Shoval, S. 2014. The presence of calcite in archeological ceramics. Journal of the European Ceramic Society 34:18991911.CrossRefGoogle Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestone in 14C dating of mortar. Radiocarbon 51(3):987993.Google Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91:130137.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindross, A, Heinemeier, J, Ringbom, A, Hueglin, S, Michalska, D, Hajdas, I, Marzaoili, F, Maspero, F, Galli, A, Artioli, G, Moreau Ch, Guibert P, Caroselli, M. 2016. Absolute dating of mortars – integrating chemical and physical techniques to characterize and select the mortar samples. In: Papayianni, I, Stefanidou, M, Pachta, V, editors. HMC2016, Greece. ISBN 978-960-99922-3-7. p. 656667.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindross, A, Heinemeier, J, Ringbom, A, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Maspero, F, Panzeri, L, Galli, A, Guibert, P, Urbanová, P, Czernik, J, Goslar, T, Caroselli, M. 2017. Mortar dating methodology: assessing recurrent issues and needs for further research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, A, Lindroos, A, Sveinbjornsdottir, A E. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Kabacińska, Z, Krzyminiewski, R, Michalska, D, Dobosz, B. 2014. Investigation of lime mortars and plasters from archaeological excavations in Hippos (Israel) using electron paramagnetic resonance. Geochronometria 41(2):112120.CrossRefGoogle Scholar
Kosednar-Legenstein, B, Dietzel, M, Leis, A, Stingl, K. 2008. Stable carbon and oxygen isotope investigation in historical lime mortar and plaster—results from field and experimental study. Nuclear Instruments and Methods in Physics Research B 331:220224.Google Scholar
Krajcar Bronić, I, Horvatinčić, N, Sironić, A, Obelić, B, Barešić, J, Felja, I. 2010. A new graphite preparation line for AMS 14C dating in the Zagreb Radiocarbon Laboratory. Nuclear Instruments and Methods in Physics Research B 268 (7/8):943946.CrossRefGoogle Scholar
Kumbaradži‐Bogojević, L. 1998. Osmanliski spomenici vo Skopje [Ottoman monuments in Skopje]. Skopje, Macedonia: IZRM. p. 60. In Macedonian.Google Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, ÁE. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. 14C dating of fire damaged mortars from medieval Finland. Radiocarbon 54(3–4):915931.CrossRefGoogle Scholar
Lindroos, A, Ranta, H, Heinemeier, J, Lill, J-O. 2014. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in mortar. Nuclear Methods and Instruments in Physics Research B 331:220224.CrossRefGoogle Scholar
Lindroos, A, Ringbom, A, Heinemeier, J, Hodgins, G, Sonck-Koota, P, Sjöberg, P, Lancaster, L, Kaisti, R, Brock, F, Ranta, H, Caroselli, M, Lugli, S. 2018. Radiocarbon dating historical mortars: Lime lumps and/or binder carbonate. Radiocarbon 60(3):875899.CrossRefGoogle Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Quirós Castillo, JA, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: methodological aspects and field study applications at CIRCE. Nuclear Instruments and Methods in Physics Research B 294:246251.CrossRefGoogle Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.CrossRefGoogle Scholar
Michalska Nawrocka, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement on the Golan Heights. Radiocarbon 49(2):625–37.CrossRefGoogle Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Żurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating of binding materials. Geochronometria 40(1):3341.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41:227239.CrossRefGoogle Scholar
Nawrocka, D, Pawlita, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Journal on Methods and Applications of Absolute Chronology Geochronometria 24:109115.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: The case of medieval Shayzar citadel, Syria. Radiocarbon 55(2–3):514525.CrossRefGoogle Scholar
Nonni, S, Marzaiolli, F, Mignardi, S, Passariello, I, Capano, M, Terrasi, F. 2018. Radiocarbon dating of mortars with a pozzolana aggregate using the Cryo2Sonic protocol to isolate the binder. Radiocarbon 60(2):617637.CrossRefGoogle Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Insausti, M, Ibańez, A. 2008. Geochemical characterization of archaeological lime mortars: Provenance inputs. Archaeometry 50:387408.CrossRefGoogle Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Murelaga, X, Insausta, M, Ibañez, A. 2012. Historic lime-mortar 14C dating of Santa María La Real (Zarautz, northern Spain). Radiocarbon 54:2336.CrossRefGoogle Scholar
Pesce, GLA, Ball, RJ. 2012. Dating of old lime based mixtures with the “Pure Lime Lumps“ technique. Radiometric dating. In: Michalska Nawrocka, D, editor. InTech. Available at: https://www.intechopen.com/books/radiometric-dating/dating-of-old-lime-based-mixtures-with-the-pure-lime-lumps-technique.Google Scholar
Pesce, GLA, Quarta, G, Calganile, L, D’Elia, MD, Cavaciocchi, P, lastrico, C, Guastella, R. 2009. Radiocarbon dating of lumps from aerial mortars and plasters: methodological issues and results from San Nicolò of Capodimonte church (Camogli, Genoa, Italy). Radicarbon 51(2):867872.CrossRefGoogle Scholar
Petrv, K. 1998. Akveduktot kraj Skopje i problemot na negovoto datiranje [Problems of dating the Skopje Aqueduct]. Makedonsko nasledstvo (MakNas) 7:87111. In Macedonian.Google Scholar
Poduska, KM, Regev, L, Berna, F, Mintz, E, Milevski, I, Kahalaily, H, Weiner, S, Boaretto, E. 2012. Plaster characterization at the PPNB site of Yiftahael (Israel) including the use of 14C: implication for plaster production, preservation, and dating. Radiocarbon 54(3–4):887896.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Ringbom, A, Heinemeier, J, Lindroos, A, Brock, F. 2008. Mortar dating and Roman pozzolana, results and interpretations. Comm. Hum. Litt. 128:187208.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2) 619635.CrossRefGoogle Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B, Felja, I. 2013. Status report on the Zagreb radiocarbon laboratory—AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics Research B 294:185188.CrossRefGoogle Scholar
Sonninen, E, Erametsa, P, Jungner, H. 1989. Dating of mortar and bricks: an example from Finland. In: Maniatis, Y, editor. Archaeometry: proceedings of the 25th international symposium. p. 99107.Google Scholar
Szczepaniak, M, Nawrocka, D, Mrozek-Wysocka, M. 2008. Applied geology in analytical characterization of stone materials from historical building. Applied Physics A: Materials Science & Processing 90(1):8995.CrossRefGoogle Scholar
Van Balen, K. 2005. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research 35:647657.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610618.CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.CrossRefGoogle Scholar