Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T08:02:12.746Z Has data issue: false hasContentIssue false

RADIOCARBON DATING OF MORTAR CHARCOALS FROM MEDIEVAL RÝZMBURK CASTLE, NORTHWESTERN BOHEMIA

Published online by Cambridge University Press:  27 December 2022

Kateřina Pachnerová Brabcová*
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Pavel Kundrát
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Tomáš Krofta
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Václav Suchý
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Markéta Petrová
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Nikola Pravdíková
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
David John
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Petr Kozlovcec
Affiliation:
Department of Lime Technologies, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 809/76, 190 00 Praha, Czech Republic
Kristýna Kotková
Affiliation:
Department of Lime Technologies, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 809/76, 190 00 Praha, Czech Republic
Anna Fialová
Affiliation:
Department of Lime Technologies, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 809/76, 190 00 Praha, Czech Republic
Jan Válek
Affiliation:
Department of Lime Technologies, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 809/76, 190 00 Praha, Czech Republic
Ivo Svetlik
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
Pavel P Povinec
Affiliation:
Faculty of Mathematics, Physics and Informatics, Comenius University, 841 03 Bratislava, Slovakia
*
*Corresponding author. Email: [email protected]

Abstract

Rýzmburk Castle is one of the largest and most important medieval castles in Bohemia, documented since 1250 AD. Its North tower is assumed to be built in 1260–1300 AD. To test this assumption, the surface layers of mortar were inspected for the presence of charcoals suitable for radiocarbon dating, and 10 charcoals were found. The charcoals probably originated from wood used for lime burning. The results of radiocarbon dating using accelerator mass spectrometry agree with the historical estimation. Single post-1287 sample indicates that the building date might be refined to 1287–1300 AD.

Type
Case Study
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 110(2869):678680.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Cercatillo, S, Friedrich, M, Kromer, B, Paleček, D, Talamo, S. 2021. Exploring different methods of cellulose extraction for 14C dating. New Journal of Chemistry 45:8938.CrossRefGoogle Scholar
Cháb, J, Fatka, O, Hladil, J, Kalvoda, J, Šimůnek, Z, Štorch, P, Vašíček, Z, Zajíc, J, Zapletal, J. 2010. Outline of the geology of the Bohemian Massif: the basement rocks and their Carboniferous and Permian Cover. Prague: Czech Geological Survey Publishing House.Google Scholar
Dallmeyer, RD, Franke, W, Weber, K, editors. 1995. Pre-Permian geology of Central and Eastern Europe. Berlin–Heidelberg–New York: Springer.CrossRefGoogle Scholar
Daugbjerg, TS, Lichtenberger, A, Lindroos, A, Michalska, D, Raja, R, Olsen, J. 2022. Radiocarbon dating of lime plaster from a Roman period cistern in ancient Gerasa, Jerash in Jordan. Journal of Archaeological Science: Reports 42:103373.Google Scholar
Daugbjerg, TS, Lindroos, A, Heinemeier, J, Ringborn, Å, Barrett, G, Michalska, D, Hajdas, I, Raja, R, Olsen, A. 2021. A field guide to mortar sampling for radiocarbon dating. Archaeometry 63(5):11211140.Google Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Hajdas, I. 2009. Applications of radiocarbon dating method. Radiocarbon 51(1):7990.CrossRefGoogle Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringborn, Å. 2003. Dating ancient mortar—although radiocarbon dating is usually applied to organic remains, recent work shows that it can also reveal the age of sonic inorganic building materials. American Scientist 91(2):130137.CrossRefGoogle Scholar
John, D, Kundrát, P, Pachnerová Brabcová, K, Molnár, M, Světlík, I. 2022. Modelling global carbon and radiocarbon cycles. Radiation Protection Dosimetry. doi: 10.1093/rpd/ncac137.CrossRefGoogle Scholar
Jull, AJT. 2013. Some interesting and exotic applications of carbon-14 dating by accelerator mass spectrometry. Journal of Physics: Conference Series 436:012083.Google Scholar
Klápště, J, Ricketts, P. 2012.The Czech lands in medieval transformation. Brill, Leiden. ISBN: 9789004226463.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201:742.CrossRefGoogle Scholar
Lehký, I. 2012. Malý „obří“ hrad Rýzmburk–Die „kleine“ Burg Riesenburg (Rýzmburk) [The small giant castle Ryzmburk]. In: Kuljavceva-Hlavová J, Kotyza O, Sýkora M, editors. Hrady českého severozápadu. Sborník k životnímu jubileu Tomáš Durdíka–Burgen in Nordwestböhmen. Festschrift für prof. Tomáš Durdík zu seinem Lebensjubiläum. Most. p. 149–203.Google Scholar
Lehký, I. 2018. Hrad Rýzmburk [Ryzmburk castle], 3D visualization available at https://www.youtube.com/watch?v=5I8D1__drOM [visited on February 25, 2022].Google Scholar
Linick, TW, Damon, PE, Donahue, DJ, Jull, AJT. 1989. Accelerator mass spectrometry: the new revolution in radiocarbon dating. Quaternary International 1:16.CrossRefGoogle Scholar
Mathews, JP. 2001. Radiocarbon dating of architectural mortar: a case study in the Maya region, Quintana Roo, Mexico. Journal of Field Archaeology 28(3–4):395400.CrossRefGoogle Scholar
Michalska, D, Mrozek-Wysocka, M. 2020. Radiocarbon dating of mortars and charcoals from Novae bath comples: sequential dissolution of historical and experimental mortar samples with Pozzolanic admixture. Radiocarbon 62(3):579590.CrossRefGoogle Scholar
Michalska Nawrocka, D, Michczyńska, DJ, Pazdur, A, Czernik, J. 2007. Radiocarbon chronology of the ancient settlement in the Golan heights area, Israel. Radiocarbon 49(2):625637.CrossRefGoogle Scholar
Mísař, Z, Dudek, A, Havlena, V, Weiss, J. 1983. Geologie ČSSR: Český Masív. Státní pedagogické nakladatelství, Praha (in Czech).Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240242.CrossRefGoogle ScholarPubMed
Nawrocka, D, Goslar, T, Pazur, A. 2010. Historic mortars and plasters as a material for age determination. In: Dan, MB, Přikryl, R, Török, Á, editors. Materials, technologies, and practice in historic heritage structures. Dordrecht: Springer.Google Scholar
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reducing agent: precision improvement of EnvironMicadas 14C measurements on graphite targets. Radiocarbon 57:979990.CrossRefGoogle Scholar
Pachnerová Brabcová, K, Krofta, T, Valášek, V, Suchý, V, Kundrát, P, Šimek, P, Kozlovec, P, Kotková, K, Fialová, A, Povinec, PP, Válek, J, Světlík, I. 2022. Radiocarbon dating of charcoals from historical mortars from Týřov and Pyšolec castles. Radiation Protection Dosimetry. doi: 10.1093/rpd/ncac119.CrossRefGoogle Scholar
Povinec, P, Cherkinsky, A, Dorica, J, Hajdas, I, Jull, AJT, Kontul, I, Molnár, M, Světlík, I, Wild, EM. 2021. Radiocarbon dating of St. George’s rotunda in Nitrianska Blatnica (Slovakia): international consortium results. Radiocarbon 63(3):953976.CrossRefGoogle Scholar
Razím, V. 2019. Věž hradu Rýzmburku (Oseku) a otázka její obytné funkce. [The Rýzmburk tower and the question of its dwelling function]. In: Dejmal M, Jan L, Procházka R, editors. Na hradech a tvrzích. Miroslavu Plačkovi k 75. narozeninám jeho přátelé a žáci. Praha. p. 177–189.Google Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(2):725757.CrossRefGoogle Scholar
Rutgers, L, de Jong, A, van der Borg, K. 2002. Radiocarbon dates from the Jewish catacombs of Rome. Radiocarbon 44(2):541547.CrossRefGoogle Scholar
Schiffer, MB. 1986. Radiocarbon dating and the “old wood” problem: The case of the Hohokam chronology. Journal of Archaeological Science 13(1):1330.CrossRefGoogle Scholar
Šimek, P, Megisová, N, Bemš, J. 2019. Preparation of wood, charcoal and bone collagen micro samples using automat for AMS radiocarbon dating. Radiation Protection Dosimetry 186:433436.CrossRefGoogle ScholarPubMed
Svetlik, I, Jull, AJT, Molnár, M, Povinec, P, Kolář, T, Demján, P, Pachnerova Brabcova, K, Brychova, V, Dreslerova, D, Rybnicek, M, Simek, P. 2019. The best possible time resolution: how precise could a radiocarbon dating method be? Radiocarbon 61(6):17291740.CrossRefGoogle Scholar
Thacker, M. 2020. Dating medieval masonry buildings by radiocarbon analysis of mortar-entrapped relict limekiln fuels—a buildings archaeology. Journal of Archaeological Method and Theory 27:381438.CrossRefGoogle Scholar
Tubbs, LE, Kinder, TN. 1990. The use of AMS for dating of lime mortars. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 52(3–4):438441.CrossRefGoogle Scholar
Válek, J, Stuchlíková, E, Maříková-Kubková, J, Ebel, M. 2015. Calcarius. Geographic information system of historical and current raw material resources and technologies for the production of lime binders. Praha: ÚTAM AV ČR, v. v. i, online map application: http://www.calcarius.cz/gis-calcarius/ [last visited 2022-05-25] (in Czech).Google Scholar
Van Strydonck, MJY, van der Borg, K, de Jong, AFM, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic materiál from buildings. Radiocarbon 34(3):873879.CrossRefGoogle Scholar