Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T19:31:51.685Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Late Pleistocene Marine Shells from the Southern North Sea

Published online by Cambridge University Press:  26 July 2016

F S Busschers*
Affiliation:
TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
F P Wesselingh
Affiliation:
Naturalis Biodiversity Center, Leiden, the Netherlands
R H Kars
Affiliation:
Centre for Luminescence Dating, Delft University of Technology, Faculty of Applied Sciences, Delft, the Netherlands
M Versluijs-Helder
Affiliation:
Department of Inorganic Chemistry and Catalysis, Utrecht University, Utrecht, the Netherlands
J Wallinga
Affiliation:
Centre for Luminescence Dating, Delft University of Technology, Faculty of Applied Sciences, Delft, the Netherlands Soil Geography and Landscape Group, Wageningen University, Wageningen, the Netherlands
J H A Bosch
Affiliation:
TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
J Timmner
Affiliation:
TNO – Applied Environmental Chemistry, Utrecht, the Netherlands
K G J Nierop
Affiliation:
Department of Earth Sciences – Geochemistry, Utrecht University, Utrecht, the Netherlands
T Meijer
Affiliation:
Naturalis Biodiversity Center, Leiden, the Netherlands WMC Kwartair Consultants, Alkmaar, the Netherlands
F P M Bunnik
Affiliation:
TNO – Geological Survey of the Netherlands, Utrecht, the Netherlands
H De Wolf
Affiliation:
WMC Kwartair Consultants, Alkmaar, the Netherlands
*
2. Corresponding author. Email: [email protected].

Abstract

This article presents a set of Late Pleistocene marine mollusk radiocarbon (AMS) age estimates of 30–50 14C kyr BP, whereas a MIS5 age (>75 ka) is indicated by quartz and feldspar OSL dating, biostratigraphy, U-Th dating, and age-depth relationships with sea level. These results indicate that the 14C dates represent minimum ages. The age discrepancy suggests that the shells are contaminated by younger carbon following shell death. The enigmatic 14C dates cannot be “solved” by removing part of the shell by stepwise dissolution. SEM analysis of the Late Pleistocene shells within a context of geologically younger (recent/modern, Holocene) and older (Pliocene) shells shows the presence of considerable amounts of an intracrystalline secondary carbonate precipitate. The presence of this precipitate is not visible using XRD since it is of the same (aragonitic) polymorph as the original shell carbonate. The combination of nanospherulitic-shaped carbonate crystals, typical cavities, and the presence of fatty acids leads to the conclusion that the secondary carbonate, and hence the addition of younger carbon, has a bacterial origin. As shell material was studied, this study recommends an assessment of possible bacterial imprints in other materials like bone collagen as well.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear instruments and Methods in Physics Research B 123(1–4):221–5.Google Scholar
Aerts-Bijma, AT, van der Plicht, J, Meijer, HAJ. 2001. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43(2A):293–8.Google Scholar
Aitken, MJ. 1985. Thermoluminescence Dating. London: Academic Press.Google Scholar
Aitken, MJ. 1990. Science-Based Dating in Archaeology. London: Longman.Google Scholar
Alexanderson, H, Murray, AS. 2012. Luminescence signals from modern sediments in a glaciated bay, NW Svalbard. Quaternary Geochronology 10:250–6.Google Scholar
Appelo, CAJ, Postma, D. 2005. Geochemistry, Ground-Water and Pollution. Leiden: A. A. Balkema.Google Scholar
Ballarini, M, Wintle, AG, Wallinga, J. 2006. Spatial variation of dose rate from beta sources as measured using single grains. Ancient TL 24(1):18.Google Scholar
Ballarini, M, Wallinga, J, Wintle, AG, Bos, AJJ. 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42(3):360–9.Google Scholar
Barabesi, C, Galizzi, A, Mastromei, G, Rossi, M, Tamburini, E, Perito, B. 2007. Bacillus subtilus gene cluster involved in calcium carbonate biomineralization. Journal of Bacteriology 189(1):228–35.Google Scholar
Benzerara, K, Menguy, N, López-García, P, Yoon, TH, Kazmierczak, J, Tyliszczak, T, Brown, GE Jr. 2006. Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences of the USA 103(25):9440–5.Google Scholar
Bish, DL, Post, JE. 1993. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. American Mineralogist 78(9–10):932–40).Google Scholar
Bøtter-Jensen, L, Andersen, CE, Duller, GAT, Murray, AS. 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37(4–5):535–41.Google Scholar
Braucher, R, Bourlès, D, Merchel, S, Vidal Romani, J, Fernadez-Mosquera, D, Marti, K, Léanni, L, Chauvet, F, Arnold, M, Aumaître, G, Keddadouche, K. 2013. Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides. Nuclear Instruments and Methods in Physics Research B 294:484–90.Google Scholar
Bunnik, FPM. 2008. Pollenanalyses van boring Lutjelollum (Fr.) (B05G0834). TNO-report 2008-U-R0631/A. Utrecht: TNO. In Dutch.Google Scholar
Busschers, FS, Weerts, HJT, Wallinga, J, Cleveringa, P, Kasse, C, de Wolf, H, Cohen, KM. 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences 84(1):2541.Google Scholar
Busschers, FS, Kasse, C, van Balen, RT, Vandenberghe, J, Cohen, KM, Weerts, HJT, Wallinga, J, Johns, C, Cleveringa, P, Bunnik, FPM. 2007. Late Pleistocene evolution of the Rhine-Meuse system in the Southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy. Quaternary Science Reviews 26(25–28):3216–48.Google Scholar
Busschers, FS, Van Balen, RT, Cohen, KM, Kasse, C, Weerts, HJT, Wallinga, J, Bunnik, FPM. 2008. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37(3):377–98.Google Scholar
Buylaert, J-P, Murray, AS, Thomsen, KJ, Jain, M. 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6):560–5.Google Scholar
Buylaert, J-P, Jain, M, Murray, AS, Thomsen, KJ, Thiel, C, Sohbati, R. 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41(3):435–51.Google Scholar
Castanier, S, Le Méteyer-Levrel, G, Martire, L. 2000. Bacterial roles in the precipitation of carbonate minerals. In: Riding, RE, Awramik, SM, editors. Microbial Sediments. Heidelberg: Springer. p 32–9.Google Scholar
Chiavari, G, Galletti, GC. 1992. Pyrolysis-gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis 24(2):123–37.Google Scholar
Cleveringa, P, Meijer, T, Van Leeuwen, RJW, De Wolf, H, Pouwer, R, Lissenberg, T, Burger, AW. 2000. The Eemian stratotype locality at Amersfoort in the central Netherlands: a re-evaluation of old and new data. Geologie en Mijnbouw 79:197216.Google Scholar
Cunningham, AC, Wallinga, J. 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5(6):657–66.Google Scholar
Dandurand, JL, Gout, R, Schott, J. 1982. Experiments on phase transformations and chemical reactions of mechanically activated minerals by grinding: petrogenetic implications. Tectonophysics 83(3–4):365–86.Google Scholar
Decho, AW. 2010. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecological Engineering 36(2):137–44.Google Scholar
De Gans, W, Beets, DJ, Centineo, MC. 2000. Late Saalian and Eemian deposits in the Amsterdam glacial basin. Geologie en Mijnbouw 79:147–60.Google Scholar
de Leeuw, JW, Versteegh, GJM, Van Bergen, PF. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plants and Climate Change 182:209–33.Google Scholar
De Yoreo, JJ, Vekilov, PG. 2003. Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry 54(1):5793.Google Scholar
Douka, K, Hedges, REM, Higham, TFG. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and novel density separation protocol (CarDS). Radiocarbon 52(2–3):735–51.Google Scholar
Dupraz, C, Visscher, PT, Baumgartner, LK, Reid, RP. 2004. Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51(4):745–65.Google Scholar
Ebigbo, A, Helmig, R, Cunningham, AB, Class, H, Gerlach, R. 2010. Modelling biofilm growth in the presence of carbon dioxide and water flow in the subsurface. Advances in Water Resources 33(7):762–81.Google Scholar
Gammage, RB, Glasson, DR. 1976. The effect of grinding on the polymorphs of calcium carbonate. Journal of Colloid and Interface Science 55(2):396401.Google Scholar
Goslar, T, Pazdur, MF. 1985. Contamination studies on mollusk shell samples. Radiocarbon 27(1):3342.Google Scholar
Gosse, JC, Philips, FM. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20(14):1475–560.Google Scholar
Guiter, F, Andrieu-Ponel, V, De Beaulieu, JL, Ceddadi, R, Calvez, M, Ponel, P, Reille, M, Keller, T, Goeury, C. 2003. The last climatic cycles in Western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records. Quaternary International 111(1):5974.Google Scholar
Hijma, MP, Cohen, KM, Hoffmann, G, Van der Spek, AJF, Stouthamer, E. 2009. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Netherlands Journal of Geosciences 88(1):1353.Google Scholar
Huntley, DJ, Baril, MR. 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15(1):11–3.Google Scholar
Huntley, DJ, Hancock, RGV. 2001. The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL 19:43–6.Google Scholar
Huntley, DJ, Lamothe, M. 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38(7):1093–106.Google Scholar
Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiology and Molecular Biology Reviews 55(2):288302.Google Scholar
Kars, RH, Busschers, FS, Wallinga, J. 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12:7486.Google Scholar
Kars, RH, Wallinga, J. 2009. IRSL dating of K-feldspars: modelling natural dose response curves to deal with anomalous fading and trap competition. Radiation Measurements 44(5–6):594–9.Google Scholar
Kars, RH, Wallinga, J, Cohen, KM. 2008. A new approach towards anomalous fading correction for feldspar IRSL dating – tests on samples in field saturation. Radiation Measurements 43(2–6):786–90.Google Scholar
Kiden, P, Denys, L, Johnston, P. 2002. Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results. Journal of Quaternary Science 17(5–6):535–46.Google Scholar
Kooi, H, Johnston, P, Lambeck, K, Smither, C, Molendijk, R. 1998. Geological causes of recent (∼100 yr) vertical land movement in the Netherlands. Tectonophysics 299(4):297316.Google Scholar
Lambeck, K. 1995. Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound. Journal of the Geological Society of London 152(3):437–48.Google Scholar
Lambeck, K, Purcell, A, Zhao, J, Svensson, N-O. 2010. The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39(2):410–35.Google Scholar
Lamothe, M, Auclair, M, Hamzaoui, C, Huot, S. 2003. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements 37(4–5):493–8.Google Scholar
Magnani, G, Bartolomei, P, Cavulli, F, Esposito, M, Marino, EC, Neri, M, Rizzo, A, Scaruffi, S, Tosi, M. 2007. U-series and radiocarbon dates on mollusk shells from the uppermost layer of the archaeological site of KHB-1, Ra's al Khabbah, Oman. Journal of Archaeological Science 34(5):749–55.Google Scholar
Mangerud, J. 1972. Radiocarbon dating of marine mollusks, including discussion of apparent age of recent mollusks from Norway. Boreas 1(2):143–72.Google Scholar
Matsuzaki, H, Nakano, C, Yamashita, H, Maejima, Y, Miyairi, Y, Wakasa, S, Horiuchi, K. 2004. Current status and future direction of MALT, The University of Tokyo. Nuclear Instruments and Methods in Physics Research B 223–224:92–9.Google Scholar
Mcijer, T. 2008. Molluskenonderzoek van boring Lutjclollum-5G834. Palacomal, WMC Kwartair Consultants, Rapport M24, 1–6, 1 addendum. In Dutch.Google Scholar
Meijer, T, Cleveringa, P. 2009. Aminostratigraphy of Middle and Late Pleistocene deposits in The Netherlands and the southern part of the North Sea Basin. Global and Planetary Change 68(4):326–45.Google Scholar
Meijer, T, Preece, RC. 1995. Malacological evidence relating to the insularity of the British Isles during the Quaternary. In: Preece, RC, editor. Island Britain: A Quaternary Perspective. London: Geological Society Special Publication 96. p 89110.Google Scholar
Mejdahl, V. 1987. Internal radioactivity in quartz and feldspar grains. Ancient TL 5(2):10–7.Google Scholar
Moerdijk, PW, Janssen, AW, Wesselingh, FP, Peeters, GA, Pouwer, R, van Nieulande, FAD, Janse, AC, van der Slik, L, Meijer, T, Rijken, R, Cadee, GC, Hoeksema, D, Doeksen, G, Bastemeijer, A, Strack, H, Vervoenen, M, ter Poorten, JJ. 2010. De fossiele schelpen van de Nederlandse kust. Leiden: NCB Naturalis.Google Scholar
Mol, D, Post, K, Reumer, JWF, van der Plicht, H, de Vos, J, van Geel, B, van Reenene, G, Pals, JP, Glimmerveen, J. 2006. The Eurogeul – first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea. Quaternary International 142–143:178–85.Google Scholar
Mol, D, de Vos, J, Bakker, R, van Geel, B, Glimmerveen, J, van der Plicht, H, Post, K. 2008. Kleine encyclopedic van het leven in het Pleistoceen: mammoeten, neushoorns en andere dieren van de Noordzeebodem. Diemen: Veen Magazines.Google Scholar
Morthekai, P, Jain, M, Murray, AS, Thomsen, KJ, Bøtter-Jensen, L. 2008. Fading characteristics of martian analogue materials and the applicability of a correction procedure. Radiation Measurements 43(2–6):672–8.Google Scholar
Murray, A, Buylaert, J-P, Henriksen, M, Svendsen, J-I, Mangerud, J. 2008. Testing the reliability of quartz OSL ages beyond the Eemian. Radiation Measurements 43(2–6):776–80.Google Scholar
Murray, AS, Wintle, AG. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1):5773.Google Scholar
Murray, AS, Wintle, AG. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5):377–81.Google Scholar
Murray, AS, Buylaert, J-P, Thomsen, KJ, Jain, M. 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44(5–6):554–9.Google Scholar
Nadeau, M-J, Grootes, MP, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. 2001. Carbonate 14C background: Does it have multiple personalities? Radiocarbon 43(2A):169–76.Google Scholar
Peltier, WR. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32:111–49.Google Scholar
Pesenti, H, Leoni, M, Scardi, P. 2008. XRD line profile analysis of calcite powders produced by high energy milling. Zeitschrift fur Kristallographie Supplement 27:143–50.Google Scholar
Post, VEA, van der Plicht, H, Meijer, HAJ. 2003. The origin of brackish and saline groundwater in the coastal area of the Netherlands. Netherlands Journal of Geosciences 82(2):133–47.Google Scholar
Prescott, JR, Hutton, JT. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23(2–3):497500.Google Scholar
Price, GJ, Webb, GE, Zhao, J. 2011. Dating megafaunal extinction on the Pleistocene Darling Downs, eastern Australia: the promise and pitfalls of dating as a test of extinction hypotheses. Quaternary Science Reviews 30(7–8):899914.Google Scholar
Reimann, T, Tsukamoto, S. 2012. Dating the recent past (<500 years) by post-IR IRSL feldspar – examples from the North Sea and Baltic Sea coast. Quaternary Geochronology 10:180–7.Google Scholar
Rietveld, HM. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2:6571.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.Google Scholar
Siddall, M, Kaplan, MR, Schaefer, JM, Putnam, A, Kelly, MA, Goehring, B. 2010. Changing influence of Antarctic and Greenland temperature records on sea level over the last glacial cycle. Quaternary Science Reviews 29(3–4):410–23.Google Scholar
Stankiewicz, BA, van Bergen, PF, Duncan, IJ, Carter, JF, Briggs, DEG, Evershed, RP. 1996. Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 10(14):1741–57.Google Scholar
Steffen, H. 2006. Determination of a consistent viscosity distribution in the Earth's mantle beneath Northern and Central Europe [PhD dissertation]. Berlin: Institut für Geologische Wissenschaften der Freie Universität Berlin.Google Scholar
Thiel, C, Buylaert, J-P, Murray, A, Terhorst, B, Hofer, I, Tsukamoto, S, Frechen, M. 2011. Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1):2331.Google Scholar
Thomsen, KJ, Murray, AS, Jain, M, Bøtter-Jensen, L. 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10):1474–86.Google Scholar
Törnqvist, TE, Wallinga, J, Murray, AS, De Wolf, H, Cleveringa, P, De Gans, W. 2000. Response of the Rhine-Meuse system (west-central Netherlands) to the last Quaternary glacio-eustatic cycles: a first assessment. Global and Planetary Change 27(1–4):89111.Google Scholar
Törnqvist, TE, Wallinga, J, Busschers, FS. 2003. Timing of the last sequence boundary in a fluvial setting near the highstand shoreline – insights from optical dating. Geology 31(3):279–82.Google Scholar
Tsuge, S, Matsubara, H. 1985. High-resolution pyrolysis-gas chromatography of proteins and related materials. Journal of Analytical and Applied Pyrolysis 8:4964.Google Scholar
Van der Borg, K, Alderliesten, C, de Jong, AFM, van den Brink, A, de Haas, AP, Kersemaekers, HJH, Raaymakers, JEMJ. 1997. Precision and mass fractionation in 14C with AMS. Nuclear Instruments and Methods in Physics Research B 123(1–4):97101.Google Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. Status report: the Groningen AMS facility. Nuclear Instruments and Methods in Physics Research B 172(1–4):5865.Google Scholar
van der Plicht, J. 2012. Borderline radiocarbon. Netherlands Journal of Geosciences 91(1–2):257–61.Google Scholar
Van Dongen, BE, Schouten, S, Baas, M, Geenevasen, AJ, Sinninghe Damsté, JS. 2003. An experimental study of the low-temperature sulfurization of carbohydrates. Organic Geochemistry 34(8):1129–44.Google Scholar
Van Kaam-Peters, HME, Schouten, S, Köster, J, Sinninghe Damsté, JS. 1998. Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulfurisation. Geochimica et Cosmochimica Acta 62(19–20):3259–83.Google Scholar
Van Leeuwen, RJW, Beets, DJ, Bosch, JHA, Burger, AW, Cleveringa, P, Van Harten, D, Herngreen, GFW, Kruk, RW, Langereis, CG, Meijer, T, Pouwer, R, De Wolf, H. 2000. Stratigraphy and integrated facies analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal borehole, the Netherlands. Geologie en Mijnbouw 79:161–96.Google Scholar
Van Santvoort, PJM, De Lange, GJ, Thomson, J, Colley, S, Meysman, FJR, Slomp, CP. 2002. Oxidation and origin of organic matter in surficial Eastern Mediterranean hemipelagic sediments. Aquatic Geochemistry 8(3):153–75.CrossRefGoogle Scholar
Vink, A, Steffen, H, Reinhardt, L, Kaufmann, G. 2007. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26(25–28):3249–75.Google Scholar
Waelbroeck, C, Labeyrie, L, Michel, E, Duplessy, JC, McManus, JF, Lambeck, K, Balbon, E, Labracherie, M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21(1–3):295305.Google Scholar
Wallinga, J. 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4):303–22.Google Scholar
Wallinga, J, Murray, AS, Bøtter-Jensen, L. 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101(1–4):367–70.Google Scholar
Wallinga, J, Tornqvist, TE, Busschers, FS, Weerts, HJT. 2004. Allogenic forcing of the late Quaternary Rhine-Meuse fluvial record: the interplay of sea-level change, climate change and crustal movements. Basin Research 16(4):535–47.Google Scholar
Webb, GE, Price, GJ, Nothdurft, LD, Deer, L, Rintoul, L. 2007. Cryptic meteoric diagenesis in freshwater bivalves: implications for radiocarbon dating. Geology 35(9):803–6.Google Scholar
Westall, F, de Wit, MJ, Dann, J, Van der Gaast, S, de Ronde, CEJ, Geneke, D. 2001. Early Archean fossil bacteria and biofilms in hydrothermally influenced, shallow water sediments, Barberton Greenstone Belt, South Africa. Precambrian Research 106(1–2):93116.Google Scholar
Westerhoff, WE, Wong, TE, Geluk, MC. 2003. De opbouw van de ondergrond. In: De Mulder, EFJ, Geluk, MC, Ritsema, I, Westerhoff, WE, Wong, TE, editors. De ondergrond van Nederland. Nederlands Instituut voor Toegepaste Geowetenschappen TNO, Geologie van Nederland 7. p 247352.Google Scholar
Wintle, AG. 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421):143–4.Google Scholar
Wintle, AG, Murray, AS. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4):369–91.Google Scholar
Wohlfarth, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13(2):137–45.Google Scholar
Yokoyama, Y, Miyairi, Y, Matsuzaki, H, Tsunomori, F. 2007. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation. Nuclear Instruments and Methods in Physics Research B 259(1):330–4.Google Scholar
Zagwijn, WH. 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands, Part I: Eemian and Early Weichselian. Mededelingen Geologische Stichting N.S 14:1545.Google Scholar
Zagwijn, WH. 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15(5–6):451–69.Google Scholar