Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-19T00:05:06.275Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Iron Artifacts at the Erlangen AMS Facility

Published online by Cambridge University Press:  18 July 2016

Andreas Scharf*
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
Wolfgang Kretschmer
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
Gerhard Morgenroth
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
Thomas Uhl
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
Karin Kritzler
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
Katja Hunger*
Affiliation:
Institut für Archäometrie, Gustav–Zeuner–Str. 5, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
Ernst Pernicka*
Affiliation:
Physikalisches Institut Abt. IV, Erwin–Rommel–Str.1, Universität Erlangen, 91058 Erlangen, Germany. Email: [email protected].
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One problem in preparing iron for radiocarbon dating is the low carbon content which makes the sample size needed too large for some sample combustion systems. Also, the metallic character of the samples complicates sample combustion or oxidation. The Erlangen accelerator mass spectrometry group uses an elemental analyzer for the sample combustion, directly followed by a reduction facility. As the carbon content and sample size for iron samples are unsuitable for combustion in an elemental analyzer, 2 alternative approaches are to (a) avoid oxidation and reduction, or (b) extract the carbon from the iron, prior to combustion. Therefore, 2 different pathways were explored. One is direct sputtering of the unprocessed iron sample in the ion source. The other is the complete chemical extraction of carbon from the iron sample and dating of the carbonaceous residue. Also, different methods for cleaning samples and removing contamination were tested. In Erlangen, a Soxhlet extraction is employed for this purpose. Also, the sampling of the iron sample by drilling or cutting can be a source of contamination. Thus, the measurement of iron drill shavings yielded ages that were far too high. The first results for iron samples of known age from 2 archaeological sites in Germany are presented and discussed.

Type
Articles
Copyright
Copyright © 2004 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Beukens, RP, Pavlish, LA, Wilson, GC, Farquhar, RM. 1999. Authenticity of a Korean iron warrior on horseback. In: Young, SMM, Pollard, AM, Budd, P, Ixer, RA, editors. Metals in Antiquity. BAR International Series 792:297300. Oxford: Archaeopress.Google Scholar
Cheoun, MK, Kim, JC, Kang, J, Kim, IC, Park, JH, Song, YM. 2001. Pretreatment of iron artifacts at SNU-AMS. Radiocarbon 43(2A):217–9.CrossRefGoogle Scholar
Craddock, PT, Wayman, ML, Jull, AJT. 2002. The radiocarbon dating and authentication of iron artifacts. Radiocarbon 44(3):717–32.CrossRefGoogle Scholar
Cresswell, R G. 1992. Radiocarbon dating of iron artifacts. Radiocarbon 34(3):898905.CrossRefGoogle Scholar
Cook, AC, Wadsworth, J, Southon, JR. 2001. AMS radiocarbon dating of ancient iron artifacts: a new carbon extraction method in use at LLNL. Radiocarbon 43(2A):221–7.CrossRefGoogle Scholar
Hensch, M. 2002. Burg Sulzbach in der Oberpfalz, Archäologisch-Literarische Forschungen zur Entwicklung einer Hochadelsburg des 8–14 Jahrhunderts in Hochbayern [PhD dissertation] . Bamberg: Bamberg University. In German.Google Scholar
Hunger, K. 2003. Versuche zur 14 C-Datierung von archäologischen Eisenartefakten mit AMS [PhD dissertation] . Freiberg: Freiberg University of Mining and Technology. In German.Google Scholar
Nakamura, T. 1996. Annual Report of AMS of Nagoya University (VII). Nagoya: Nagoya University, Dating and Materials Research Center. In Japanese.Google Scholar
Nakamura, T, Hirasawa, M, Igaki, K. 1995. AMS radiocarbon dating of ancient oriental iron artifacts at Nagoya University. Radiocarbon 37(2):629–36.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
van der Merwe, NJ. 1969. The Carbon–14 Dating of Iron. Chicago: University of Chicago Press. 137 p.Google Scholar
van der Merwe, NJ, Stuiver, M. 1968. Dating iron by the carbon–14 method. Current Anthropology 9:4853.Google Scholar