Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:49:00.089Z Has data issue: false hasContentIssue false

Radiocarbon Calibration around AD 1900 from Scots Pine (Pinus Sylvestris) tree rings from Northern Norway

Published online by Cambridge University Press:  09 September 2019

Helene Svarva*
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Pieter Grootes
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Martin Seiler
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Terje Thun
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Einar Værnes
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
Marie-Josée Nadeau
Affiliation:
Norwegian University of Science and Technology, NTNU University Museum – The National Laboratory for Age Determination, Sem Sælands vei 5, 7491 Trondheim, Norway
*
*Corresponding author. Email: [email protected].

Abstract

To resolve an inconsistency around AD 1895 between radiocarbon (14C) measurements on oak from the British Isles and Douglas fir and Sitka spruce from the Pacific Northwest, USA, we measured the 14C content in single-year tree rings from a Scots pine tree (Pinus sylvestris L.), which grew in a remote location in Saltdal, northern Norway. The dataset covers the period AD 1864–1937 and its results are in agreement with measurements from the US Pacific coast around 1895. The most likely explanation for older ages in British oak in this period seems to be 14C depletion associated with the combustion of fossil fuels.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Aandstad, S. 1939. Die Jahresringbreiten einiger seltenen Kiefern in Steigen, Nordland. Nytt Magasin for Naturvitenskapene 79:127140.Google Scholar
Baillie, MGL, Pilcher, JR. 1973. A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Damon, PE, Cheng, S, Linick, TW. 1989. Fine and hyperfine structure in the spectrum of secular variations of atmospheric 14C. Radiocarbon 31(3):704718.CrossRefGoogle Scholar
Dee, MW, Brock, F, Harris, SA, Bronk Ramsey, C, Shortland, AJ, Higham, TFG, Rowland, JM. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37:687693.CrossRefGoogle Scholar
Eckstein, D, Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88(1):230250.CrossRefGoogle Scholar
Eidem, P. 1953. Om svingninger i tykkelsestilveksten hos gran (Picea abies) og furu (Pinus silvestris) i Trøndelag. Meddelelser fra det Norske Skogforsøksvesen 12:1155.Google Scholar
Førland, EJ, Hanssen-Bauer, I, Nordli, PØ. 1997. Climate statistics & long-term series of temperature and precipitation at Svalbard and Jan Mayen. Report no. 21/97 Klima, Norwegian Meteorological Institute.Google Scholar
Hogg, A, Bronk Ramsey, C, Turney, C, Palmer, J. 2009. Bayesian evaluation of the Southern Hemisphere radiocarbon offset during the Holocene. Radiocarbon 51(4):11651176.CrossRefGoogle Scholar
Hogg, A, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U, Fink, D, Watanasak, M, Jacobsen, GE. 2004a. Radiocarbon in tropical tree rings during the Little Ice Age. Nuclear Instruments and Methods in Physics Research B 223–224:489494.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U. 2004b. Radiocarbon in annual tree rings from Thailand during the pre-bomb period, AD 1938–1954. Radiocarbon 46(2):925932.CrossRefGoogle Scholar
Kirchhefer, AJ. 1999 Dendroclimatology on Scots pine (Pinus sylvestris L.) in Northern Norway. Tromsø, Norway: University of Tromsø.Google Scholar
Knox, FB, McFadgen, BG. 2001. Least-squares fitting smooth curves to decadal radiocarbon calibration data from AD 1145 to AD 1945. Radiocarbon 43(1):87118.CrossRefGoogle Scholar
Knox, FB, McFadgen, BG. 2004. Radiocarbon/tree-ring calibration, solar activity, and upwelling of ocean water. Radiocarbon 46(2):987995.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294: 25292532.CrossRefGoogle ScholarPubMed
Le Clercq, M, van der Plicht, J, Gröning, M. 1997. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295297.CrossRefGoogle Scholar
Mann, WB. 1983. An international reference material for radiocarbon dating. Radiocarbon 25(2):519527.CrossRefGoogle Scholar
Manning, SW, Griggs, C, Lorentzen, B, Bronk Ramsey, C, Chivall, D, Jull, AJT, Lange, TE. 2018. Fluctuating radiocarbon offsets observed in the southern Levant and implications for archaeological chronology debates. Proceedings of the National Academy of Sciences 115(24):61416146.CrossRefGoogle ScholarPubMed
Manning, SW, Kromer, B, Bronk Ramsey, C, Pearson, CL, Talamo, S, Trano, N, Watkins, JD. 2010. 14C record and wiggle-match placement for the Anatolian (Gordion area) juniper tree-ring chronology ~1729 to 751 cal BC, and typical Aegean/Anatolian (growing season related) regional 14C offset assessment. Radiocarbon 52(4):15711597.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25(9):13211324.CrossRefGoogle Scholar
McCormac, FG, Reimer, PJ, Hogg, AG, Higham, TFG, Baillie, MGL, Palmer, J, Stuiver, M. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: AD 1850–950. Radoicarbon 44(3):641651.CrossRefGoogle Scholar
Moen, A. 1999. National atlas of Norway: vegetation. Hønefoss, Norway: Norwegian Mapping Authority.Google Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:420425.CrossRefGoogle Scholar
Nadeau, M-J, Værnes, E, Svarva, HL, Larsen, E, Gulliksen, S, Klein, M, Mous, DJW. 2015. Status of the “new” AMS facility in Trondheim. Nuclear Instruments and Methods in Physics Research B 361:149155.CrossRefGoogle Scholar
Nakamura, T, Masuda, K, Miyake, F, Nagaya, K, Yoshimitsu, T. 2013. Radiocarbon ages of annual rings from Japanese wood: evident age offset based on IntCal09. Radiocarbon 55(2–3): 763770.CrossRefGoogle Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):13581370.CrossRefGoogle Scholar
Ohneiser, A. 2006. Entwicklung einer automatischen CO2-Reduktionsanlage zur Probenvorbereitung am AMS Radiokarbonlabor Erlangen. Friedrich-Alexander-Universität, Erlangen-Nürnberg.Google Scholar
O’Malley, E. 1981. The decline of the Irish industry in the nineteenth century. The Economic and Social Review 13(1):2142.Google Scholar
Plöger, J. 2007. Belfast city report. LSE STICERD CASEreport 44, Centre for Analysis of Social Exclusion.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rinn, F. 2005. TSAP-WIN Time-series analysis and presentation for dendrochronology and related applications. Rinn Tech, Heidelberg.Google Scholar
Rozanski, K. 1991. Consultants’ group meeting on C-14 reference materials for radiocarbon laboratories. IAEA internal report. February 18–20. Vienna, Austria. 25 p.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506519.CrossRefGoogle Scholar
Scott, EM. 2003. Section 2: the results. Radiocarbon 45(2):151157.Google Scholar
Seiler, M, Grootes, PM, Haarsaker, J, Lélu, S, Rzadeczka-Juga, I, Stene, S, Svarva, HL, Thun, T, Værnes, E, Nadeau, M-J. 2019. Status report of the Trondheim radiocarbon laboratory. Radiocarbon 61(6). This issue.CrossRefGoogle Scholar
Statistics Norway. 2018. Table 06913: Population 1 January and population changes during the calendar year (M) 1951–2018. Available at: https://www.ssb.no/en/statbank/table/06913/. Retrieved 2018-08-20.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3(4):289305.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25(3):329332.CrossRefGoogle Scholar
Stuiver, M, Burk, RL, Quay, PD. 1984. 13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere. Journal of Geophysical Research 89:1173111748.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Brazuinas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):11271151.CrossRefGoogle Scholar
Thun, T. 2002. Dendrochronological constructions of Norwegian conifer chronologies providing dating of historical material. Norwegian University of Science and Technology, Norway.Google Scholar
Supplementary material: File

Svarva et al. supplementary material

Table S1

Download Svarva et al. supplementary material(File)
File 20.3 KB
Supplementary material: File

Svarva et al. supplementary material

Figure S1

Download Svarva et al. supplementary material(File)
File 269.1 KB