Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-20T17:09:46.478Z Has data issue: false hasContentIssue false

Radiocarbon Age of the Laacher See Tephra: 11,230 ± 40 BP

Published online by Cambridge University Press:  18 July 2016

Irena Hajdas
Affiliation:
Institut für Teilchenphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Swiss Federal Institute for Environmental Science and Technology (EAWAG), überlandstrasse 133, CH-8600 Dübendorf, Switzerland
Susan D. Ivy-Ochs
Affiliation:
Institut für Teilchenphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Ingenieurgeologie, ETH-Hönggerberg
Georges Bonani
Affiliation:
Institut für Teilchenphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
André F. Loiter
Affiliation:
Swiss Federal Institute for Environmental Science and Technology (EAWAG), überlandstrasse 133, CH-8600 Dübendorf, Switzerland
Bernd Zolitschka
Affiliation:
Fachbereich VI Geologie, Universität Trier, D-54286 Trier, Germany
Christian Schlüchter
Affiliation:
Geologisches Institut, Universität Bern, CH- 3012 Bern, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Laacher Sec Tephra (LST) layer provides a unique and invaluable time marker in European sediments with increasing importance because it occurs just before the onset of the Younger Dryas (YD) cold event. As the YD begins ca. 200 calendar years after the LST was deposited, accurate determination of the radiocarbon age of this ash layer will lead to a more accurate age assignment for the beginning of the YD. On the basis of 12 terrestrial plant macrofossil 14C ages derived from sediments from Soppensee, Holzmaar and Schlakenmehrener Maar, we found an age of at least 11,230 ± 40 bp for the LST event. This is ca. 200 yr older than the often reported age of 11,000 ± 50 bp (van den Bogaard and Schmincke 1985).

Type
I. 14C in the Reconstruction of Past Environments
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Ammann, B. and Lotter, A. F. 1989 Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18: 109126.CrossRefGoogle Scholar
Björck, S. and Möller, P. 1987 Late Weichselian environmental history in southeastern Sweden during the deglaciation of the Scandinavian Ice Sheet. Quaternary Research 28: 137.CrossRefGoogle Scholar
Bonani, G., Beer, J., Hofmann, H., Synal, H. A., Suter, M., Wölfli, W., Pfleiderer, C., Junghans, C. and Münnich, K. O. 1987 Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B29: 8790.CrossRefGoogle Scholar
Broecker, W. S. 1992 Defining the boundaries of the BOA warm and YD cold isotope episodes. Quaternary Research 38: 135139.CrossRefGoogle Scholar
Burr, G., Beck, J. W., Edwards, R. L., Donahue, D. J., Taylor, F. W., Recy, J., Gray, S. C. and O'Malley, J. M. (ms.) 1994 An atmospheric Δ14C record from 11,800 to 12,400 years bp based on 230Th ages of corals from Santo Island, Vanuatu. Paper presented at the 15th International 14C Conference, Glasgow, Scotland, 15–19 August.Google Scholar
Denton, G. and Hendy, C. H. 1994 Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264: 14341437.CrossRefGoogle Scholar
Eicher, U. and Siegenthaler, U. 1976 Palynological and isotope investigations on Late-Glacial sediment cores from Switzerland. Boreas 5: 109117.CrossRefGoogle Scholar
Eicher, U. and Siegenthaler, U. 1982 Klimatische Informationen aus Sauerstoff-Isotopenverhältnissen in Seesedimenten. Physische Geographie 1: 103110.Google Scholar
Frechen, J. 1959 Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschritte der Geologie Rheinland und Westfalen 4: 363370.Google Scholar
Gulliksen, S., Possnert, G., Mangerud, J. and Birks, H. (ms.) 1994 AMS 14C dating of the Krakenes Late Weichselian sediments. Paper presented at the 15th International 14C Conference, Glasgow, Scotland, 15–19 August.Google Scholar
Hajdas, I. 1993 (ms.) Extension of the Radiocarbon Calibration Curve by AMS Dating of Laminated Sediments of Lake Soppensee and Lake Holzmaar. Ph.D. Dissertation, ETH No. 10157, ETH Zurich: 147 p.Google Scholar
Hajdas, I., Ivy, S. D., Beer, J., Bonani, G., Imboden, D., Lotter, A. F., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of lake Soppensee: 6000 to 12,000 14C years bp. Climate Dynamics 9: 107116.CrossRefGoogle Scholar
Hajdas, I., Zolitschka, B., Ivy, S. D., Beer, J., Bonani, G., Leroy, S. A G., Ramrath, M., Negendank, J. F. W. and Suter, M. 1995 AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. Submitted to Quaternary Science Reviews 14: 137143.CrossRefGoogle Scholar
Lotter, A. F. and Birks, H. J. B. 1993 The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. Journal of Quaternary Science 8: 263276.CrossRefGoogle Scholar
Loiter, A. F., Eicher, U., Siegenthaler, U. and Birks, H. J. B. 1992 Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7: 187204.Google Scholar
Lotter, A. F. and Hölzer, A. 1989 Spätglatziale Umweltverhältnise im Südschwarzwald: Erste Ergebnisse paläolimnologischer und paläoökologischer Untersuchungen an Seesedimenten des Hirschenmoores. Carolinea 47: 714.Google Scholar
Mangerud, J., Anderson, S. T., Berglund, B. E. and Donner, J. J. 1974 Quaternary stratigraphy of Norden, a proposal for timing and classification. Boreas 3: 109123.CrossRefGoogle Scholar
Olsson, I. 1986 Radiometric methods. In Berglund, B., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester, John Wiley & Sons: 273312.Google Scholar
Peteet, D., Alley, R. B., Bond, G., Chappelaz, J., Clapperton, C., Del Genio, A. and Keigwin, L. 1993 Global Younger Dryas? EOS , December 14: 586588.Google Scholar
Straka, H. 1975 Die spätquartäre Vegetationsgeschichte der Vulkaneifel. Beiträge zur Landespflege Rheinland-Pfalz 3: 1163.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
van den Bogaard, P. (ms.) 1983 Die Eruption des Laacher See Vulkans. Ph.D. Dissertation, Bochum, Germany, Ruhr–Universität: 348 p.Google Scholar
van den Bogaard, P. and Schminke, H.-U. 1985 Laacher See Tephra: A widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96: 15541571.2.0.CO;2>CrossRefGoogle Scholar
Wohlfarth, B., Björk, S., Possnert, G., Lemdahl, G., Brunnberg, L., Ising, J., Olsson, S. and Svensson, N. 1993 AMS dating of the Swedish varved clays of the last glacial/interglacial transition and the potential difficulties of calibrating Late Weichselian “absolute” chronologies. Boreas 22: 113128.CrossRefGoogle Scholar
Wörner, G. and Schmincke, H.-U. 1984 Mineralogical and chemical zonation of the Laacher See Tephra (East Eifel, W. Germany). Journal of Petrology 25: 805835.CrossRefGoogle Scholar
Zolitschka, B. 1990 Spätquartäre Jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Documenta Naturae 60: 1226.Google Scholar
Zolitschka, B., Haverkamp, B. and Negedank, J. F. W. 1992 Younger Dryas oscillation – Varve dated microstratigraphic, palynological and paleomagnetical records from Lake Holzmaar, Germany. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I, Vol. 2. Berlin. Springer-Verlag: 81101.CrossRefGoogle Scholar