Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T01:14:34.275Z Has data issue: false hasContentIssue false

Radiocarbon – A Unique Tracer of Global Carbon Cycle Dynamics

Published online by Cambridge University Press:  18 July 2016

Ingeborg Levin
Affiliation:
Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany. Email: [email protected].
Vago Hesshaimer
Affiliation:
Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany. Email: [email protected].
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Climate on Earth strongly depends on the radiative balance of its atmosphere, and thus, on the abundance of the radiatively active greenhouse gases. Largely due to human activities since the Industrial Revolution, the atmospheric burden of many greenhouse gases has increased dramatically. Direct measurements during the last decades and analysis of ancient air trapped in ice from polar regions allow the quantification of the change in these trace gas concentrations in the atmosphere. From a presumably “undisturbed” preindustrial situation several hundred years ago until today, the CO2 mixing ratio increased by almost 30% (Figure 1a) (Neftel et al. 1985; Conway et al. 1994; Etheridge et al. 1996). In the last decades this increase has been nearly exponential, leading to a global mean CO2 mixing ratio of almost 370 ppm at the turn of the millennium (Keeling and Whorf 1999).

Type
Research Article
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Bonka, H. 1980. Produktion und Freisetzung von Tritium und Kohlenstoff-14 durch Kernwaffenversuche, Testexplosionen und kerntechnische Anlagen, einschließlich Wiederaufarbeitungsanlagen. In: Stieve, FE, Kirstner, G, editors. Strahlenschutz-probleme im Zusammenhang mit der Verwendung von Tritium und Kohlenstoff-14 und ihren Verbindungen. Berlin: Dietrich Reimer Verlag. p 1726.Google Scholar
Boutin, J, Etcheto, J. 1997. Long-term variability of the air-sea CO2 exchange coefficient: consequences for the CO2 fluxes in the equatorial Pacific Ocean. Global Biogeochemical Cycles 11:453–70.Google Scholar
Broecker, WS, Peng, T-H. 1994. Stratospheric contribution to the global bomb radiocarbon inventory: model versus observation. Global Biogeochemical Cycles 8(3):377–84.Google Scholar
Broecker, WS, Peng, T-H, Engh, R. 1980. Modelling the carbon systen. Radiocarbon 22(3):565–98.CrossRefGoogle Scholar
Broecker, WS, Peng, T-H, Östlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90:6953–70.Google Scholar
Broecker, WS, Ledwell, JR, Takahashi, T, Weiss, R, Merlivat, L, Memery, L, Peng, T-H, Jähne, B, Münnich, KO. 1986. Isotopic versus micrometeorological ocean CO2 fluxes: a serious conflict. Journal of Geophysical Research 91(C9):10,51727.CrossRefGoogle Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Östlund, G. 1995. Oceanic radiocarbon: Separation of the natural and bomb components. Global Biogeochemical Cycles 9(2):263–88.CrossRefGoogle Scholar
Conway, TJ, Tans, PP, Waterman, LS, Thoning, KW, Kitzis, DR, Masarie, KA, Zhang, N. 1994. Evidence for inter-annual variability of the carbon cycle from the NOAA/CMDL global air sampling network. Journal of Geophysical Research 99:22,831–55.Google Scholar
De Jong, AFM, Mook, WG. 1982. An anomalous Suess effect above Europe. Nature 298:13.Google Scholar
Druffel, EM, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2):1271–80.Google Scholar
Druffel, EM. 1995. Pacific bomb radiocarbon coral data. In: IGBP PAGES/World Data Center-A for Paleoclimatology. Boulder: NOAA/NGDC Paleoclimatology Program.Google Scholar
Enting, IG, Lassey, KR, Houghton, RA. 1993. Projections of future CO2 . CSIRO DAT Technical Paper 27. Division of Atmospheric Research, Commonwealth Science and Industry Research Organization. Mordialloc, Australia.Google Scholar
Etheridge, DM, Steele, LP, Francey, RJ, Langenfels, RL. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101(D2):4115–28.Google Scholar
Goudriaan, J. 1992. Biosphere structure, carbon sequestering potential and the atmospheric 14C carbon record. Journal of Experimental Botany 43:1111–9.Google Scholar
Hesshaimer, V. 1997. Tracing the global carbon cycle with bomb radiocarbon. PhD dissertation. University of Heidelberg.Google Scholar
Hesshaimer, V, Levin, I. 2000. Revision of the stratospheric bomb 14C inventory. Journal of Geophysical Research. Forthcoming.Google Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201–3.Google Scholar
Jain, AK, Kheshgi, HS, Wuebbles, DJ. 1997. Is there an imbalance in the global budget of bomb-produced radiocarbon? Journal of Geophysical Research 102(D1):1327–33.Google Scholar
Keeling, CD, Worf, TP. 1999. Atmospheric CO2 concentration derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. CDIAC WDC-A database, Oak Ridge National Laboratory. http://cdiac.esd.ornl.gov/ftp/ndp001/.Google Scholar
Lassey, KR, Enting, DJ, Trudinger, CM. 1996. The earth's radiocarbon budget - a consistent model of the global carbon and radiocarbon cycles. Tellus 48B:487501.Google Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, B, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):119.Google Scholar
Levin, I, Schuchard, J, Kromer, B, Münnich, KO. 1989. The continental European Suess effect. Radiocarbon 31(3):431–40.Google Scholar
Levin, I, Bösinger, R, Bonani, G, Francey, R, Kromer, B, Münnich, KO, Suter, M, Trivett, NBA, Wölfli, W. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Taylor, RE, Long, A, Kra, R, editors. Radiocarbon after four decades: an interdisciplinary perspective. New York: Springer-Verlag. p 503–18.Google Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:2334.CrossRefGoogle Scholar
Liss, PS, Merlivat, L. 1986. Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard, P, editor. The role of air-sea exchange in geochemical cycling. Hingham, Massachusetts: D Reidel. 113–27.Google Scholar
Manning, MR, Lowe, CM, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.Google Scholar
Marland, G, Boden, T, Brenkert, A, Johnston, C. 1999. Global, regional and national CO2 emission estimates from fossil fuel burning, cement production, and gas flaring: 1751–1996. CDIAC WDC-A database, Oak Ridge National Laboratory. http://cdiac.ornl.gov/ndps/ndp030.html.Google Scholar
Meijer, HAJ, Van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Comparing long term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izana, Canary Islands 14C stations. Radiocarbon 37(1):3950.Google Scholar
Neftel, A, Moor, E, Oeschger, H, Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45–7.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):3621–42.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168192.CrossRefGoogle Scholar
Otlet, RL, Fulker, MJ, Walker, AJ. 1992. Environmental impact of atmospheric Carbon-14 emissions resulting from the nuclear energy cycle. In: Taylor, RE, Long, A, Kra, R, editors. Radiocarbon after four decades: an interdisciplinary perspective. New York: Springer-Verlag. p 519–34.Google Scholar
Perruchoud, D, Joos, F, Fischlin, A, Hajdas, I, Bonani, G. 1999. Evaluating time scales of carbon turnover in temperate forest soils with radiocarbon data. Global Biogeochemical Cycles 13:555–73.CrossRefGoogle Scholar
Rath, HK. 1988. Simulation der globalen 85Kr und 14CO2 Verteilung mit Hilfe eines zeitabhängigen, zweidimensionalen Modells der Atmosphäre [PhD dissertation]. Universität Heidelberg.Google Scholar
Schimel, D, Enting, I, Heimann, M, Wigley, T, Raynaud, D, Alves, D, Siegenthaler, U. 1995. The global carbon cycle. In: Houghton, J et al., editors. Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge: Cambridge University Press. p 3571.Google Scholar
Siegenthaler, U. 1983. Uptake of excess CO2 by an outcrop-diffusion model of the ocean. Journal of Geophysical Research 88(C6):3599–359.CrossRefGoogle Scholar
Siegenthaler, U, Joos, F. 1992. Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44B(3):186207.CrossRefGoogle Scholar
Siegenthaler, U, Sarmiento, JL. 1993. Atmospheric carbon dioxide and the ocean. Nature 365:119–25.Google Scholar
Stuiver, M. 1980. 14C distribution in the Atlantic Ocean. Journal of Geophysical Research 85:2711–8.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Quay, P. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53:349–62.Google Scholar
Stuiver, M, Oestlund, HG, McConnaughey, TA. 1981. GE-OSECS Atlantic and Pacific 14C distribution. In: Bolin, B, editor. SCOPE 16, carbon cycle modelling. Chichester, New York, Brisbane, Toronto: Wiley. p 201–21.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415.Google Scholar
Tans, PP, De Jong, AFM, Mook, WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280: 826–7.Google Scholar
Tans, PP. 1981. A compilation of bomb 14C data for use in global carbon model calculations. In: Bolin, B, editor. SCOPE 16, carbon cycle modelling. Chichester, New York, Brisbane, Toronto: Wiley. p 131–57.Google Scholar
Tans, PP et al. 1996. Carbon cycle. In: Hofmann, DJ, Peterson, JT, Rosson, RM, editors. Summary report 1994–1995, Climate Monitoring and Diagnostics Laboratory No. 23. NOAA: DOE. p 2949.Google Scholar
Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. Report HASL 243:12187 (avail. NTIS, Springfield, Virginia 22151).Google Scholar
Trumbore, SE. 1993. Comparison of carbon dynamics in temperate and tropical soils. Global Biogeochemical Cycles 7:275–90.Google Scholar
UNSCEAR. 1982. Report to the General Assembly, ionising radiation: sources and biological effects. New York: UNO.Google Scholar
Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97:7373–82.Google Scholar