Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T11:21:31.306Z Has data issue: false hasContentIssue false

Pushing the Precision Limit of 14C AMS

Published online by Cambridge University Press:  18 July 2016

Peter Steier*
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
Franz Dellinger
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
Walter Kutschera
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
Alfred Priller
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
Werner Rom
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
Eva Maria Wild
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Wien, Austria.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High precision for radiocarbon cannot be reached without profound insight into the various sources of uncertainty which only can be obtained from systematic investigations. In this paper, we present a whole series of investigations where in some cases 16O:17O:18O served as a substitute for 12C:13C:14C. This circumvents the disadvantages of event counting, providing more precise results in a much shorter time. As expected, not a single effect but a combination of many effects of similar importance were found to be limiting the precision.

We will discuss the influence of machine tuning and stability, isotope fractionation, beam current, space charge effects, sputter target geometry, and cratering. Refined measurement and data evaluation procedures allow one to overcome several of these limitations. Systematic measurements on FIRI-D wood show that a measurement precision of ±20 14C yr (1 σ) can be achieved for single-sputter targets.

Type
Articles
Copyright
Copyright © 2004 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Dellinger, F, Nicolussi, K, Kutschera, W, Schießling, P, Steier, P, Wild, EM. 2004. A 14C calibration with AMS from 3500 to 3000 BC, derived from a new high-elevation stone-pine tree ring chronology. Radiocarbon , these proceedings.CrossRefGoogle Scholar
Ferry, JA. 1993. Recent developments in electrostatic accelerator technology at NEC. Nuclear Instruments and Methods in Physics Research A 328:2833.Google Scholar
Finkel, RC, Suter, M. 1993. AMS in the earth sciences: technique and applications. Advances in Analytical Geochemistry 1:1114.Google Scholar
Goodsite, ME, Rom, W, Heinemeier, J, Lange, T, Ooi, S, Appleby, PG, Shotyk, W, van der Knaap, WO, Lohse, C, Hansen, TS. 2001. High-resolution AMS 14C dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon 43(2B):495515.Google Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanism, and consequences. Science 294:2529–32.CrossRefGoogle ScholarPubMed
Kutschera, W, Collon, P, Friedmann, H, Golser, R, Hille, P, Priller, A, Rom, W, Steier, P, Tagesen, S, Wallner, A, Wild, E, Winkler, G. 1997. VERA: a new AMS facility in Vienna. Nuclear Instruments and Methods in Physics Research B 123:4750.Google Scholar
Nadeau, M-J, Kieser, WE, Beukens, RP, Litherland, AE. 1987. Quantum mechanical effects on sputter source isotope fractionation. Nuclear Instruments and Methods in Physics Research B 29:83–6.CrossRefGoogle Scholar
Niklaus, TR, Bonani, G, Suter, M, Wölfli, W. 1994. Systematic investigation of uncertainties in radiocarbon dating due to fluctuations in the calibration curve. Nuclear Instruments and Methods in Physics Research B 92:194200.Google Scholar
Priller, A, Golser, R, Hille, P, Kutschera, W, Rom, W, Steier, P, Wallner, A, Wild, E. 1997. First performance tests of VERA. Nuclear Instruments and Methods in Physics Research B 123:193–8.Google Scholar
Priller, A, Brandl, T, Golser, R, Kutschera, W, Puchegger, S, Rom, W, Steier, P, Vockenhuber, C, Wallner, A, Wild, E. 2000. Extension of the measuring capabilities at VERA. Nuclear Instruments and Methods in Physics Research B 172:100–6.Google Scholar
Puchegger, S, Rom, W, Steier, P. 2000. Automated evaluation of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 172:274–80.CrossRefGoogle Scholar
Rom, W, Golser, R, Kutschera, W, Priller, A, Steier, P, Wild, E. 1998. Systematic investigations of 14C measurements at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):255–63.Google Scholar
Scott, EM. 2003. Section 1: The Fourth International Radiocarbon Intercomparison (FIRI). Radiocarbon 45(2):135–50.Google Scholar
Steier, P, Puchegger, S, Golser, R, Kutschera, W, Priller, A, Rom, W, Wallner, A, Wild, E. 2000. Developments towards a fully automated AMS system. Nuclear Instruments and Methods in Physics Research B 161–163: 250–4.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Thiemens, MH. 1999. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–5.Google Scholar
Vockenhuber, Ch, Ahmad, I, Golser, R, Kutschera, W, Liechtenstein, V, Priller, A, Steier, P, Winkler, S. 2003. Accelerator mass spectrometry of heavy long-lived radionuclides. International Journal of Mass Spectrometry 223–224:713–32.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, T. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289–93.Google Scholar
Weisser, DC, Lobanov, NR, Hausladen, PA, Fifield, LK, Wallace, HJ, Tims, SG, Apushinsky, EG. 2002. Novel matching lens and spherical ionizer for a cesium sputter ion source. PRAMANA - Journal of Physics, Indian Academy of Sciences 59:9971006.CrossRefGoogle Scholar
Wigley, TML, Muller, AB. 1981. Fractionation corrections in radiocarbon dating. Radiocarbon 23(2):173–90.Google Scholar
Wild, E, Golser, R, Hille, P, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P, Vycudilik, W. 1998. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):273–81.Google Scholar