Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T03:02:11.442Z Has data issue: false hasContentIssue false

Present Status of Radiocarbon Calibration and Comparison Records Based on Polynesian Corals and Iberian Margin Sediments

Published online by Cambridge University Press:  18 July 2016

Edouard Bard*
Affiliation:
CEREGE, UMR 6635 and College de France, Europole de l'Arbois BP 80, 13545, Aix-en-Provence cdx 4, France
Guillemette Ménot-Combes
Affiliation:
CEREGE, UMR 6635 and College de France, Europole de l'Arbois BP 80, 13545, Aix-en-Provence cdx 4, France
Frauke Rostek
Affiliation:
CEREGE, UMR 6635 and College de France, Europole de l'Arbois BP 80, 13545, Aix-en-Provence cdx 4, France
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we present updated information and results of the radiocarbon records based on Polynesian corals and on Iberian Margin planktonic foraminifera. The latter record was first published by Bard et al. (2004a,b), with the subsequent addition of some data by Shackleton et al. (2004). These data sets are compared with the IntCal98 record (Stuiver et al. 1998) and with data sets based on other archives, such as varves of Lake Suigetsu (Kitagawa and van der Plicht 1998, 2000), speleothems from the Bahamas (Beck et al. 2001), and Cariaco sediments (Hughen et al. 2004). Up to 26,000 cal BP, the Iberian Margin data agree within the errors of the other records. By contrast, in the interval between 33,000 and 41,000 cal BP, the Iberian Margin record runs between the Lake Suigetsu and Bahamian speleothem data sets, but it agrees with the few IntCal98 coral data and the Cariaco record.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3: 635–45.CrossRefGoogle Scholar
Bard, E, Arnold, M, Maurice, P, Duprat, J, Moyes, J, Duplessy, JC. 1987a. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature 328:791–4.CrossRefGoogle Scholar
Bard, E, Arnold, M, Duprat, J, Moyes, J, Duplessy, JC. 1987b. Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating. Climate Dynamics 1:101–12.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C time scale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–10.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E, Rostek, F, Turon, JL, Gendreau, S. 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289:1321–4.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004a. A better radiocarbon clock. Science 303:178–9.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004b. Radiocarbon calibration beyond 20,000 BP by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61:204–14.CrossRefGoogle Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, W, Smart, PL, Donahue, DJ, Hererra-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292: 2453–8.CrossRefGoogle ScholarPubMed
Brassell, SC, Eglinton, G, Marlowe, IT, Pflaumann, U, Sarnthein, M. 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–33.CrossRefGoogle Scholar
Cayre, O, Lancelot, Y, Vincent, E, Hall, MA. 1999. Pale-oceanographic reconstructions from planktonic foraminifera off the Iberian Margin: temperature, salinity, and Heinrich events. Paleoceanography 14:384–96.CrossRefGoogle Scholar
Cross, M, compiler. 1997. Greenland summit ice cores. Boulder, Colorado: National Snow and Ice Data Center in association with the World Data Center for Paleoclimatology at NOAA-NGDC and the Institute of Arctic and Alpine Research. CD-ROM.Google Scholar
Coste, B, Fiuza, AFG, Minas, HJ. 1986. Conditions hydrologiques et chimiques associées à l'upwelling côtier du Portugal en fin d'été. Oceanologica Acta 9(2):149–57.Google Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, J P, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–20.CrossRefGoogle Scholar
Duplessy, JC, Bard, E, Labeyrie, L, Duprat, J, Moyes, J. 1993. Oxygen isotope records and salinity changes in the northeastern Atlantic during the last 18,000 years. Paleoceanography 8:341–50.CrossRefGoogle Scholar
Ganopolski, A, Rahmstorf, S. 2001. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–8.CrossRefGoogle Scholar
Hughen, KS, Lehman, J, Southon, J, Overpeck, O, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303:202–7.CrossRefGoogle ScholarPubMed
Johnsen, SJ, Dahl-Jensen, D, Gundestrup, N, Steffensen, JP, Clausen, HB, Miller, H, Masson-Delmotte, V, Sveinbjörnsdóttir, AE, White, J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16:299307.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3): 369–80.CrossRefGoogle Scholar
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102(C12):26,41123.CrossRefGoogle Scholar
Monge Soares, AM. 1993. The 14C content of marine shells: evidence or variability in coastal upwelling off Portugal during the Holocene. In: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and Atmosphere (Proceedings) Vienna. IAEA-SM-329/49. p 471–85.Google Scholar
McNichol, AP, Jull, AJT, Burr, GS. 2001. Converting AMS data to radiocarbon values: considerations and conventions. Radiocarbon 43(2A):313–20.CrossRefGoogle Scholar
Paillard, D, Labeyrie, L, Yiou, P. 1996. Macintosh program performs time-series analysis. Eos Transanctions AGU 77:379.CrossRefGoogle Scholar
Pailler, D, Bard, E. 2002. High-frequency paleoceanographic changes during the past 140,000 years recorded by the organic matter in sediments off the Iberian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 181:431–52.CrossRefGoogle Scholar
Paterne, M, Ayliffe, LK, Arnold, M, Cabioch, G, Tisnérat-Laborde, N, Hatté, C, Douville, E, Bard, E. 2004. Paired 14C and 230Th/U dating of surface corals from Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr range. Radiocarbon 46(2):551–66.CrossRefGoogle Scholar
Reimer, P, Reimer, R. Marine reservoir correction database. http://radiocarbon.pa.qub.ac.uk/marine/.Google Scholar
Shackleton, NJ, Hall, MA, Vincent, E. 2000. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15:565–9.CrossRefGoogle Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, TC, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23:1513–22.CrossRefGoogle Scholar
Stuiver, M, Grootes, PM. 2000. GISP2 oxygen isotope ratios. Quaternary Research 53:277–84.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, W, Burr, G, Hughen, K, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Thouveny, N, Moreno, E, Delanghe, D, Candon, L, Lancelot, Y, Shackleton, NJ. 2000. Rock-magnetism of Pleistocene sediments of the Portuguese margin: detection of Heinrich events and implications for paleoenvironmental reconstructions. Earth and Planetary Science Letters 180:6175.CrossRefGoogle Scholar
Vidal, L, Labeyrie, L, Cortijo, E, Arnold, M, Duplessy, JC, Michel, E, Becque, S, van Weering, TCE. 1997. Evidence for changes in the North Atlantic deep water linked to meltwater surges during the Heinrich events. Earth and Planetary Science Letters 146(1–2):1327.CrossRefGoogle Scholar