Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T14:37:34.988Z Has data issue: false hasContentIssue false

PRELIMINARY RADIOCARBON DATING RESULTS OF BONE SAMPLES AT THE LAC-UFF, BRAZIL

Published online by Cambridge University Press:  17 December 2020

Fabiana Oliveira*
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil
Kita Macario
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil
Karolayne Silva
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil
Bruna Pereira
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil
Ingrid Chanca
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil Max Planck Institute for Biogeomestry – Jena, Germany
Eduardo Alves
Affiliation:
University of Oxford, UK
Alberto Cid
Affiliation:
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca – Valença, Brazil
Rita Scheel-Ybert
Affiliation:
Museu Nacional da Universidade Federal do Rio de Janeiro – Rio de Janeiro, Brazil
Dayanne Amaral
Affiliation:
Universidade Federal Fluminense – Niterói, Brazil Centro Federal de Educação Tecnológica Celso Suckow da Fonseca – Nova Friburgo, Brazil
Natacha Ribeiro-Pinto
Affiliation:
Museu Nacional da Universidade Federal do Rio de Janeiro – Rio de Janeiro, Brazil
Luiz C Ruiz Pessenda
Affiliation:
CENA-USP – São Paulo, Brazil
*
*Corresponding author. Email: [email protected]

Abstract

Collagen extraction depends on the state of bone preservation, and the acidity of Brazilian soils often prevents the use of this material for radiocarbon dating. When available, however, bone samples constitute very important chronological records for both archaeological sites and natural depositional sites of specific animals. The extraction of collagen was performed using two filters, the first aiming to remove insoluble contaminants, and the second, a vivaspin ultrafilter 30KD to retain large molecular weight materials. The collagen was liofilized and converted to CO2 by combustion in sealed quartz tubes with CuO and Ag. The graphite was produced by zinc reduction in independently sealed Pyrex™ tubes. In order to verify the accuracy of this protocol, we analyzed a modern bone and four previously dated fragments, including those from the Sixth International Radiocarbon Intercomparison (SIRI), and a fragment of human bone from the Amourins site, a Brazilian shellmound. The results for the known age material are in agreement with the expected and the studied sector of Amourins shellmound was dated 4100–3900 years cal BP from a chronological model performed with charcoal dating found in different stratigraphic layers. Samples were dated at the radiocarbon laboratory of Universidade Federal Fluminense (LAC-UFF) in Brazil.

Type
Conference Paper
Copyright
© The Author(s), 2020. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17(4):431451.10.1016/0305-4403(90)90007-RCrossRefGoogle Scholar
Beaumont, W, Beverly, R, Southon, J, Taylor, RE. 2010. Bone preparation at the KCCAMS laboratory. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268(7–8):906909.10.1016/j.nimb.2009.10.061CrossRefGoogle Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.10.1017/S0033822200042107CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010. Current pretreatment methods for ams radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.10.1017/S0033822200045069CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Bronk Ramsey, C. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.10.1017/S0033822200057878CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.10.1017/S0033822200039473CrossRefGoogle Scholar
Bronk Ramsey, C, Pettitt, P, Hedges, R, Hodgins, G, Owen, DC. 2000. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 30. Archaeometry 42:459479.10.1111/j.1475-4754.2000.tb00893.xCrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.10.1017/S0033822200044118CrossRefGoogle Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268(7–8):867870.10.1016/j.nimb.2009.10.051CrossRefGoogle Scholar
Crann, CA, Murseli, S, Xiaolei, GS, Ian, Z, Kieser, WE. 2017. First status report on radiocarbon sample preparation techniques at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59(3):1620.10.1017/RDC.2016.55CrossRefGoogle Scholar
Fewlass, H, Tuna, T, Fagault, Y, Hublin, JJ, Kromer, B, et al. 2019. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep.10.1038/s41598-019-41557-8CrossRefGoogle ScholarPubMed
Fülöp, R-H, Heinze, S, John, S, Rethemeyer, J. 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55(2):491500 10.1017/S0033822200057623CrossRefGoogle Scholar
Harvey, VL, Egerton, VM, Chamberlain, AT, Manning, PL, Buckley, M. 2016. Collagen fingerprinting: a new screening technique for radiocarbon dating ancient bone. PLoS One 11(3):e0150650.10.1371/journal.pone.0150650CrossRefGoogle ScholarPubMed
Hassan, AA, Termine, JD, Haynes, CV. Jr 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon 19(3):364374.10.1017/S0033822200003684CrossRefGoogle Scholar
Hassan, AA, Hare, PE. 1978. Amino acid analysis in radiocarbon dating of bone collagen. Adv. Chem. 171:109116.10.1021/ba-1978-0171.ch007CrossRefGoogle Scholar
Higham, T, Ramsey, CB, Karavanic, I, Smith, FH, Trinkaus, E. 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proc. Natl. Acad. Sci. 103(3):553557.10.1073/pnas.0510005103CrossRefGoogle ScholarPubMed
Ho, TY, Marcus, LF, Berger, R. 1969. Radiocarbon dating of petroleum-impregnated bone from tar pits at Rancho La Brea, California. Science. 164(3883):10511052.10.1126/science.164.3883.1051CrossRefGoogle ScholarPubMed
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.10.2458/azu_js_rc.55.16783CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.10.2458/azu_js_rc.v55i2.16177CrossRefGoogle Scholar
Huels, M, van der Plicht, J, Brock, F, Matzerath, S, Chivall, D. 2017. Laboratory intercomparison of pleistocene bone radiocarbon dating protocols. Radiocarbon 59(05):15431552.10.1017/RDC.2017.23CrossRefGoogle Scholar
Hüls, CM, Grootes, PM, Nadeau, MJ. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613625.10.1017/S003382220005596XCrossRefGoogle Scholar
Linares, R, MacArio, KD, Santos, GM, Carvalho, C, Dos Santos, HC, et al. 2015. Radiocarbon measurements at LAC-UFF: Recent performance. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 361:341345.10.1016/j.nimb.2015.05.025CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature. 230(5291):241242.10.1038/230241a0CrossRefGoogle ScholarPubMed
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, et al. 2013. The Brazilian AMS radiocarbon laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2):325330.10.1017/S003382220005743XCrossRefGoogle Scholar
Macario, KD, Alves, EQ, Oliveira, FM, Moreira, VN, Chanca, IS, et al. 2016. Graphitization reaction via zinc reduction: How low can you go? Int. J. Mass Spectrom. 410:4751.10.1016/j.ijms.2016.10.020CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, et al. 2015. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 361.Google Scholar
Macario, KD, Oliveira, FM, Moreira, VN, Alves, EQ, Carvalho, C, et al. 2017. Optimization of the Amount of Zinc in the Graphitization Reaction for Radiocarbon AMS Measurements at LAC-UFF. Radiocarbon 59(3):885891.10.1017/RDC.2016.42CrossRefGoogle Scholar
McCullagh, JSO, Marom, A, Hedges, REM. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52(2):620634.10.1017/S0033822200045653CrossRefGoogle Scholar
Oliveira, F, Macario, K, Carvalho, C, Moreira, V, Alves, E, et al. 2020. LAC-UFF: recent developments and current protocols. Radiocarbon. In press.Google Scholar
Pessenda, LC, Camargo, P. 1991. Datação radiocarbônica de amostras de interesse arqueológico e geológico por espectrometria de cintilação líquida de baixa radiação de fundo. Quim. Nova. 14(2):98103.Google Scholar
Ravi Prasad, GV, Cherkinsky, A, Culp, RA, Dvoracek, DK. 2015. Two years since SSAMS: Status of14C AMS at CAIS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 361:6971.10.1016/j.nimb.2015.06.033CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Saliege, JF, Perason, A, Paris, F. 1995. Preservation of 13C/12C original ratio and 14C dating of the mineral fraction of human bones from saharan tombs, Niger. J. Archaeol. Sci. 22:301312.10.1006/jasc.1995.0032CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 259(1):293302.10.1016/j.nimb.2007.01.172CrossRefGoogle Scholar
Schoeninger, MJ, Moore, KM, Murray, ML, Kingston, JD. 1989. Detection of bone preservation in archaeological and fossil samples. Appl. Geochemistry. 4(3):281292.10.1016/0883-2927(89)90030-9CrossRefGoogle Scholar
Scott, EM, Cook, G, Naysmith, P. 2014. SIRI, an initial report. Available at http://radiocarbon.webhost.uits.arizona.edu/sites/default/files/SIRIsummary.pdf.Google Scholar
Scott, EM, Naysmith, P, Cook, GT. 2017. Should archaeologists care about 14C Intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5)15891596.CrossRefGoogle Scholar
Snoeck, C, Staff, RA, Brock, F. 2016. A reassessment of the routine pretreatment protocol for radiocarbon dating cremated bones. Radiocarbon 58(1):18.10.1017/RDC.2015.1CrossRefGoogle Scholar
Stafford, TW Jr, Hare, PE, Currie, LA, Jull, AJT, Donahue, D. 1991. Acclerator radiocarbon dating at the molecular level. J. Archaeol. Sci. 18:3572.10.1016/0305-4403(91)90078-4CrossRefGoogle Scholar
Szidat, S, Vogel, E, Gubler, R, Lösch, S. 2017. Radiocarbon dating of bones at the LARA Laboratory in Bern, Switzerland. Radiocarbon 59(3):831842.10.1017/RDC.2016.90CrossRefGoogle Scholar
Talamo, S, Richards, M. 2011. A comparison of bone pretreatment methods for AMS dating of samples >30,000 BP. Radiocarbon 53:443449.10.1017/S0033822200034573CrossRefGoogle Scholar
Tripp, JA, McCullagh, JSO, Hedges, REM. 2006. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen. J. Sep. Sci. 29(1):4148.10.1002/jssc.200500247CrossRefGoogle ScholarPubMed
van der Plicht, J, Palstra, SWL. 2016. Radiocarbon and mammoth bones: What’s in a date. Quat. Int. 406:246251.10.1016/j.quaint.2014.11.027CrossRefGoogle Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26(6):687695.CrossRefGoogle Scholar
Wood, RE, Bronk Ramsey, C, Higham, TFG. 2010. Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon 52(2):600611.10.1017/S003382220004563XCrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, et al. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 259(1):320329.CrossRefGoogle Scholar
Zazzo, A, Saliège, JF. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310(1–2):5261.10.1016/j.palaeo.2010.12.004CrossRefGoogle Scholar
Zazzo, A, Saliège, JF, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: Where does the carbon come from? Radiocarbon 51(2):601611.10.1017/S0033822200055958CrossRefGoogle Scholar