Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T23:10:22.491Z Has data issue: false hasContentIssue false

Potential for a New Multimillennial Tree-Ring Chronology from Subfossil Balkan River Oaks

Published online by Cambridge University Press:  09 February 2016

Charlotte L. Pearson*
Affiliation:
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, Tucson, AZ 85721, USA
Tomasz Ważny
Affiliation:
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, Tucson, AZ 85721, USA Institute for the Study, Conservation and Restoration of Cultural Heritage, Nicolaus Copernicus University, ul. Sienkiewicza 30/32, 87-100 Toruń, Poland
Peter I. Kuniholm
Affiliation:
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, Tucson, AZ 85721, USA
Katarina Botić
Affiliation:
Institute of Archaeology, Ljudevita Gaja 32, HR-10000, Zagreb, Croatia
Aleksandar Durman
Affiliation:
Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Ivana Lučića 3, HR-10000, Zagreb, Croatia
Katherine Seufer
Affiliation:
2699 Derby Street, Apt. 1, Berkeley, CA 94705, USA
*
Corresponding author: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A total of 272 oak (Quercus sp.) samples have been collected from large subfossil trees dredged from sediment deposited by the Sava and various tributary rivers in the Zagreb region of northwestern Croatia, and in northern Bosnia and Herzegovina. Measurement series of tree-ring widths from these samples produced 12 groups, totaling 3456 years of floating tree-ring chronologies spread through the last ca. 8000 years. This work represents the first step in creating a new, high-resolution resource for dating and paleoenvironmental reconstruction in the Balkan region and potentially a means to bridge between the floating tree-ring chronologies of the wider Mediterranean region and the continuous long chronologies from central Europe.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Baillie, M. G. L., 1983. Is there a single British Isles oak tree-ring signal? In Proceedings of the 22nd Symposium on Archaeometry, April, 1982, edited by Aspinall, A., and Warren, S. E.; pp. 7382. University of Bradford, Bradford, UK.Google Scholar
Becker, B., 1982. Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flussablagerungen. Ein Beitrag zur nacheiszeitlichen Auenentwicklung im südlichen Mitteleuropa. In Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften. Band 5, Vienna.Google Scholar
Becker, B., 1983. Prehistoric dendrochronology for archaeological dating: Hohenheim oak series present to 1800BC. In Proceedings of the First International Symposium 14C and Archaeology, Groningen, 1981. PACT 8:503510.Google Scholar
Becker, B., 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon 35(1):201213.CrossRefGoogle Scholar
Becker, B., and Delorme, A., 1978. Oak chronologies for Central Europe: Their extension from medieval to prehistoric times. Radiocarbon 22(2):219226.CrossRefGoogle Scholar
Begović, V., and Schrunk, I., 2010. Endangered cultural heritage along the major rivers and adjacent wetlands in Croatia. In Remote Sensing and Geoinformation Not Only for Scientific Cooperation, edited by Halounova, L.; pp. 3042. Czech Technical University, Prague.Google Scholar
Benjamin, J., Bekić, L., Komšo, D., Koncani Uhač, I., and Bonsall, C., 2011. Investigating the submerged prehistory of the eastern Adriatic: Progress and prospects. In Submerged Prehistory, edited by Benjamin, J., Bonsall, C., Pickard, C., and Fischer, A.; pp. 193206. Oxbow Books, Oxford.Google Scholar
Berger, J. F., and Guilaine, J., 2009. The 8200 cal BP abrupt environmental change and the Neolithic transition: A Mediterranean perspective. Quaternary International 200(1):3149.Google Scholar
Bianchi, G. G., and McCave, I. N., 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397(6719):515517.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Priore, P., and Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):12571266.Google Scholar
Bonsall, C., Macklin, M. G., Payton, R. W., and Boroneant, A., 2002. Climate, floods and river gods: Environmental change and the Meso-Neolithic transition in southeast Europe. Before Farming 3–4:115.Google Scholar
Bordon, A., Peyron, O., Lézine, A. M., Brewer, S., and Fouache, E., 2009. Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International 200(1):1930.CrossRefGoogle Scholar
Bout-Roumazeilles, V., Comboureu Nebout, N., Peyron, O., Cortijo, E., Landais, A., and Masson-Delmotte, V., 2007. Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. Quaternary Science Reviews 26(25–28):31973215.Google Scholar
Brewer, P. W., 2014. Data management in dendroarchaeology using Tellervo. Radiocarbon 56(4):S79S83; Tree-Ring Research 70(3):S70–S83.Google Scholar
Brewer, P. W., Sturgeon, K., Madar, L., and Manning, S. W., 2010. A new approach to dendrochronological data management. Dendrochronologia 28(2):131134.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C., van der Plicht, J., and Weninger, B., 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381389.Google Scholar
Brown, D. M., Munro, M. A. R., Baillie, M. G. L., and Pilcher, J. R., 1986. Dendrochronology – The absolute Irish standard. Radiocarbon 28(2A):279283.Google Scholar
Burr, G. S., Donahue, D. J., Tang, Y., Beck, J. W., McHargue, L., Biddulph, D., Cruz, R., and Jull, A. J. T., 2007. Error analysis at the NSF Arizona AMS Facility. Nuclear Instruments and Methods in Physics Research B 259(1):149153.CrossRefGoogle Scholar
Cedro, A., 2007. Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: Comparison of the climatic determinants of tree-ring width. Geochronometria 26:3945.CrossRefGoogle Scholar
Cook, E. R., and Kairiukstis, L. A.L. A., editors, 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Springer, Dordrecht.Google Scholar
Cook, E. R., Buckley, B. M., Palmer, J. G., Fenwick, P., Peterson, M. J., Boswijk, G., and Fowler, A., 2006. Millennia-long tree-ring records from Tasmania and New Zealand: A basis for modelling climate variability and forcing, past, present and future. Journal of Quaternary Science 21(7):689699.Google Scholar
Čufar, K., 2007. Dendrochronology and past human activity – A review of advances since 2000. Tree-Ring Research 63(1):4760.Google Scholar
Čufar, K. de Luis, M., Zupančič, M., and Eckstein, D., 2008. A 548-year tree-ring chronology of oak (Quercus spp.) for southeast Slovenia and its significance as a dating tool and climate archive. Tree-Ring Research 64(1):315.Google Scholar
Čufar, K., Grabner, M., Morgós, A., Martínez del Castillo, E., Merela, E., and de Luis, M., 2014. Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28(5):12671277.Google Scholar
Cullen, H. M., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T., and Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 28(4):379382.Google Scholar
Donahue, D. J., Linick, T. W., and Jull, A. J. T., 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135142.CrossRefGoogle Scholar
Ducousso, A., and Bordacs, S., 2004. EUFORGEN. Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). International Plant Genetic Resources Institute, Rome; 6 pp.Google Scholar
Durman, A., Gaspari, A., Levanič, T., and Novšak, M., 2009. The development of the regional oak tree-ring chronology from the Roman sites in Celje (Slovenia) and Sisak (Croatia). In Tree-Rings, Kings and Old World Archaeology and Environment: Papers Presented in Honor of Peter Ian Kuniholm, edited by Manning, S. W., and Bruce, M. J.; pp. 5764. Oxbow Books, Oxford.Google Scholar
Eckstein, D., 2007. Human time in tree rings. Dendrochronologia 24:5360.Google Scholar
Eronen, M., Zetterberg, P., Briffa, K. R., Lindholm, M., Meriläinen, J., and Timonen, M., 2002. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences. The Holocene 12(6):673680.Google Scholar
Ferguson, C. W., 1969. A 7104-year annual tree-ring chronology for bristlecone pine, Pinus aristata, from the White Mountains, California. Tree-Ring Bulletin 29(3–4):329.Google Scholar
Fowler, A., Boswijk, G., and Ogden, J., 2004. Tree-ring studies on Agathis australis (kauri): A synthesis of development work on Late Holocene chronologies. Tree-Ring Research 60(1):1529.Google Scholar
Friedrich, M., Remmele, S., Kromer, B., Hoffmann, J., Spurk, M., Kaiser, K. F., Orcel, C., and Kuppers, M., 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe–A unique annual record for radiocarbon calibration and paleoenvironmental reconstructions. Radiocarbon 46(3):11111122.Google Scholar
Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., and Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627–1600 BC. Science 312(5773):548548.Google Scholar
Gajić-Čapka, M., 1991. Short-term precipitation maxima in different precipitation climate zones of Croatia, Yugoslavia. International Journal of Climatology 11(6):677687.Google Scholar
Gričar, J., 2010. Xylem and phloem formation in sessile oak from Slovenia in 2007. Wood Research 55(4):1522.Google Scholar
Gričar, J., 2013. Influence of temperature on cambial activity and cell differentiation in Quercus sessiliflora and Acer pseudoplatanus of different ages. Drvna Industrija 64(2):95105.Google Scholar
Griggs, C. B., Kuniholm, P. I., Newton, M. W., Watkins, J. D., and Manning, S. W., 2009. A 924-year regional oak tree-ring chronology for north central Turkey. In Tree-Rings, Kings and Old World Archaeology and Environment: Papers Presented in Honor of Peter Ian Kuniholm, edited by Manning, S. W., and Bruce, M. J.; pp. 7179. Oxbow Books, Oxford.Google Scholar
Grudd, H., Briffa, K. R., Karlén, W., Bartholin, T. S., Jones, P. D., and Kromer, B., 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: Natural climatic variability expressed on annual to millennial timescales. The Holocene 12(6):657665.Google Scholar
Haneca, K., Ważny, T., Van Acker, J., and Beeckman, H., 2005. Provenancing Baltic timber from art historical objects: Success and limitations. Journal of Archaeological Science 32(2):261271.Google Scholar
Haneca, K., Čufar, K., and Beeckman, H., 2009. Oaks, tree-rings and wooden cultural heritage: A review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science 36(1):111.Google Scholar
Hillam, J., Morgan, R. A., and Tyers, I., 1987. Sapwood estimates and the dating of short ring sequences. In Applications of Tree-Ring Studies: Current Research in Dendrochronology and Related Studies, edited by Ward, R. G. W.; pp. 165185. BAR International Series volume 333, Archaeopress, Oxford.Google Scholar
Hu, F. S., Slawinski, D., Wright, H. E. Jr., Ito, E., Johnson, R. G., Kelts, K. R., McEwan, R. F., and Boedigheimer, A., 1999. Abrupt changes in North American climate during early Holocene times. Nature 400(29):437440.Google Scholar
Huang, C. C., Pang, J., Zha, X., Su, H., and Jia, Y., 2011. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China. Quaternary Science Reviews 30(3):460468.Google Scholar
Jahns, S., and van den Bogaard, C., 1998. New palynological and tephrostratigraphical investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia. Vegetation History and Archaeobotany 7(4):219234.Google Scholar
Jansma, E., Brewer, P., and Zandhuis, I., 2010. TRiDaS 1.1: The tree-ring data standard. Dendrochronologia 28(2):99130.Google Scholar
Jull, A. J. T., Burr, G. S., Beck, J. W., Hodgins, G. W. L., Biddulph, D. L., McHargue, L. R., and Lange, T. E., 2008. Accelerator mass spectrometry of long-lived light radionuclides. In “Analysis of Environmental Radionuclides,” edited by Povinec, P.; pp. 241262. Radioactivity in the Environment , volume 11, Elsevier, Amsterdam.Google Scholar
Kalafatić, H., 2009. Rescue excavations of the Čepinski Martinci-Dubrava site on the Beli Manastir-Osijek-Svilaj Motorway Route in 2007 and 2008. In Annales Instituti Archaeologici, No. 1; pp. 2626. Institut za arheologiju, Zagreb.Google Scholar
Kolar, T., Kyncl, T., and Rybniček, M., 2012. Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30(3):243248.Google Scholar
Kuniholm, P. I., 2001. Dendrochronology and other applications of tree-ring studies in archaeology. In Handbook of Archaeological Sciences, edited by Brothwell, D., and Pollard, A. M.; pp. 3546. Wiley, London.Google Scholar
Kuniholm, P. I., 2008. Dendrochronology of the Byzantine world. In The Oxford Handbook of Byzantine Studies, edited by Jeffreys, E.; pp. 182192. Oxford University Press, Oxford.Google Scholar
Kuniholm, P. I., and Striker, C. L., 1987. Dendrochronological investigations in the Aegean and neighboring regions, 1983–1986. Journal of Field Archaeology 14(4):385398.Google Scholar
Leuschner, H. H., Spurk, M., Baillie, M., and Jansma, E., 2000. Stand dynamics of prehistoric oak forests derived from dendrochronologically dated subfossil trunks from bogs and riverine sediments in Europe. GeoLines 11:118121.Google Scholar
Leuschner, H. H., Sass-Klaassen, U., Jansma, E., Baillie, M. G. L., and Spurk, M., 2002. Subfossil European bog oaks: Population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene 12(6):695706.Google Scholar
Linick, T. W., Suess, H. E., and Becker, B., 1985. La Jolla measurements of radiocarbon in south German oak tree-ring chronologies. Radiocarbon 27(1):2032.Google Scholar
Magny, M., Bégeot, C., Guiot, J., and Peyron, O., 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22(15–17):15891596.Google Scholar
Magny, M., Arnaud, F., Billaud, Y., and Marguet, A., 2012. Lake-level fluctuations at Lake Bourget (eastern France) around 4500–3500 cal. a BP and their palaeoclimatic and archaeological implications. Journal of Quaternary Science 27(5):494502.Google Scholar
Manning, S. W., Bronk Ramsey, C., Kutschera, W., Higham, T., Kromer, B., Steier, P., and Wild, E. M., 2006. Chronology for the Aegean Late Bronze Age 1700–1400 BC. Science 312(5773):565569.Google Scholar
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., and Steig, E. J., 2004. Holocene climate variability. Quaternary Research 62(3):243255.Google Scholar
Nicolussi, K., Kaufmann, M., Melvin, T. M., van der Plicht, J., Schießling, P., and Thurner, A., 2009. A 9111 year long conifer tree-ring chronology for the European Alps: A base for environmental and climatic investigations. The Holocene 19(6):909920.Google Scholar
Panagiotakopulu, E., Higham, T., Sarpaki, A., Buckland, P., and Doumas, C., 2013. Ancient pests: The season of the Santorini Minoan volcanic eruption and a date from insect chitin. Naturwissenschaften 100(7):683689.Google Scholar
Pilcher, J. R., Baillie, M. G. L., Schmidt, B., and Becker, B., 1984. A 7,272-year tree-ring chronology for western Europe. Nature 312(5990):150152.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and J. van der Plicht, 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Sadori, L., Jahns, S., and Peyron, O., 2011. Mid-Holocene vegetation history of the central Mediterranean. The Holocene 21(1):117129.Google Scholar
Salzer, M. W., Hughes, M. K., Bunn, A. G., and Kipfmueller, K. F., 2009. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the USA 106(48):20,34820,353.Google Scholar
Spurk, M., Friedrich, M., Hofmann, J., Remmele, S., Frenzel, B., Leuschner, H. H., and Kromer, B., 1998. Revisions and extension of the Hohenheim oak and pine chronologies: New evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):11071116.Google Scholar
Staubwasser, M., Sirocko, F., Grootes, P. M., and Segl, M., 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30(8):1425, doi:10.1029/2002GL016822.Google Scholar
Tegel, W., Elburg, R., Hakelberg, D., Stäuble, H., and Büntgen, U., 2012. Early Neolithic water wells reveal the world's oldest wood architecture. PLoS One 7(12):e51374, doi:101371/journal.pone.0051374.Google Scholar
Teržan, B., and Črešnar, M., 2013. Absolute Dating of the Bronze and Iron Ages in Slovenia. National Museum of Slovenia, Ljubljana.Google Scholar
Ufnalski, K., 2006. Teleconnection of 23 modern chronologies of Quercus robur and Q. petraea from Poland. Dendrobiology 55:5156.Google Scholar
Vanniere, B., Magny, M., Joannin, S., Simonneau, A., Wirth, S. B., Hamann, Y., and Anselmetti, F. S., 2013. Orbital changes, variation in solar activity and increased anthropogenic activities: Controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy. Climate of the Past 9(3):11931209.Google Scholar
Ważny, T., 1990. Aufbau und Anwendung der Dendrochronologie für Eichenholz in Polen. Ph.D. dissertation, University of Hamburg.Google Scholar
Ważny, T., and Eckstein, D., 1991. The dendrochronological signal of oak (Quercus spp.) in Poland. Dendrochronologia 9:3549.Google Scholar
Ważny, T., Lorentzen, B., Köse, N., Akkemik, Ü., Boltryk, Y., Güner, T., Kyncl, J., Kyncl, T., Nechita, C., Sagaydak, S., and Kamenova Vasileva, J., 2014. Bridging the gaps in tree-ring records: Creating a high-resolution dendrochronological network for Southeastern Europe. Radiocarbon 56(4):S39S50; Tree-Ring Research 70(3):S39–S50.Google Scholar
Weiss, H., 1997. Late third millennium abrupt climate change and social collapse in West Asia and Egypt. In Third Millennium BC Climate Change and Old World Collapse; pp. 711723. Springer, Berlin.Google Scholar
Wenxiang, W., and Tungsheng, L., 2004. Possible role of the “Holocene Event 3” on the collapse of Neolithic cultures around the Central Plain of China. Quaternary International 117(1):153166.Google Scholar
Wiener, M. H., 2012. Problems in the measurement, calibration, analysis and communication of radiocarbon dates (with special reference to the prehistory of the Aegean world). Radiocarbon 54(3–4):423434.Google Scholar