Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:03:45.564Z Has data issue: false hasContentIssue false

Paired Radiocarbon Dating on Human Samples and Camelid Fibers and Textiles from Northern Chile: The Case of Pica 8 (Tarapacá)

Published online by Cambridge University Press:  18 May 2017

Francisca Santana-Sagredo*
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3Q1, United Kingdom
Rick Schulting
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3Q1, United Kingdom
Julia Lee-Thorp
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford, OX1 3Q1, United Kingdom
Carolina Agüero
Affiliation:
Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, Gustavo Le Paige 380, San Pedro de Atacama, 1410000, Chile
Mauricio Uribe
Affiliation:
Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto 1045, Ñuñoa, Santiago, 7800284, Chile
Cecilia Lemp
Affiliation:
Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto 1045, Ñuñoa, Santiago, 7800284, Chile
*
*Corresponding author. Email: [email protected].

Abstract

Pica 8 is a Late Intermediate Period (AD 900–1450) cemetery located in the Atacama Desert. Burials at the site present unexpectedly high variability in δ13C (–8‰ to –16‰) and δ15N (10‰ to 24‰) values in their skeletal tissues, implying highly diverse diets. There are two possible explanations for this variability: the first is diachronic change in diet while the second involves synchronic sociocultural distinctions. To distinguish between them a radiocarbon (14C) dating program (n=23) was initiated. The presumed importance of marine foods adds the complication of a marine reservoir effect. To address this problem, paired 14C dates were obtained on human bone and camelid textiles from nine graves. The results fall into two groups, one showing an average offset of 117±9 14C yr, and the other no statistically significant offsets. We conclude that the contribution of marine foods to bone collagen at Pica 8 was less than previously supposed. Other factors must be invoked to account for the unusually high human δ15N values at the site. Manuring crops with sea-bird guano emerges as a probable explanation. No relationship with chronology is seen implying the presence of considerable diversity in diets and hence lifeways within the Pica 8 community.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agüero, C. 2004. Componente Tiwanaku vs. Componente local: El Período Medio en los oasis de San Pedro de Atacama. In: Solanilla V, editor. Tejiendo sueños en el Cono Sur. Textiles Andinos: pasado, presente y futuro. Barcelona: Universitat Autònoma de Barcelona. p 180198.Google Scholar
Agüero, C. 2015. Vestuario y sociedad andina. Desarrollo del Complejo Pica–Tarapacá (800–1400 DC). QILLQA Ediciones IAA. San Pedro de Atacama: Universidad Católica del Norte.Google Scholar
Ascough, PL, Cook, GT, Church, MJ, Dunbar, E, Einarsson, A, McGovern, TH, Dugmore, AJ, Perdikaris, S, Hastie, H, Frioriksson, A, Gestsdottir, H. 2010. Temporal and spatial variations in freshwater 14C reservoir effects: Lake Myvatn, Northern Iceland. Radiocarbon 52(3):10981112.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ, Barber, J, Higney, E, Scott, EM. 2004. Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46(2):611620.Google Scholar
Berenguer, J, Dauelsberg, P. 1989. El norte grande en la órbita de Tiwanaku. In: Hidalgo J, Aldunate C, Solimano I, editors. Culturas de Chile, Prehistoria. Santiago: Andrés Bello. p 181220.Google Scholar
Briones, L, Núñez, L, Standen, V. 2005. Geoglifos y tráfico prehispánico de caravanas de llamas en el Desierto de Atacama (Norte de Chile). Chungara 37:195223.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Carré, M, Jackson, D, Maldonado, A, Chase, B, Sachs, J. 2016. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12.000 years. Quaternary Research 85(1):8793.Google Scholar
Cases, B, Lemp, C, Campos, F. 2007. Conservando textiles: una experiencia para el Departamento de Antropología de la Universidad de Chile. Report FONDART Project 44237.Google Scholar
Cases, B, Rees, C, Pimentel, G, Labarca, R, Leiva, D. 2008. Sugerencias desde un contexto funerario en un “espacio vacío” del Desierto de Atacama. Boletín del Museo Chileno de Arte Precolombino 13:5170.Google Scholar
Cieza de León, P. 1922 [1553]. La Crónica del Perú. Madrid: Calpe.Google Scholar
DeNiro, R. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.Google Scholar
Dewar, G, Reimer, PJ, Sealy, J, Woodborne, S. 2012. Late-Holocene marine radiocarbon reservoir correction (ΔR) for the west coast of South Africa. The Holocene 22(12):14811489.Google Scholar
Díaz, F, Frugone, M, Gutiérrez, R, Latorre, C. 2016. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils, and herbivore diet. Nature Scientific Reports 6:22226.Google Scholar
Diez de San Miguel. 1964 [1567]. Visita hecha en la provincial de Chucuito en el año 1567. Documentos Regionales para la Etnología y Etnohistoria Andina, tomo I. Lima. Ediciones de la Casa de la Cultura del Perú.Google Scholar
Evans, R, Ehleringer, J. 1994. Plant δ15N values along a fog gradient in the Atacama Desert, Chile. Journal of Arid Environments 28:189193.Google Scholar
Fernandes, R, Rinne, C, Nadeau, MJ, Grootes, P. 2014. Towards the use of radiocarbon as a dietary proxy: establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology 21:285294.Google Scholar
Fontugne, M, Carre, M, Bentaleb, I, Julien, M, Lavallee, D. 2004. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46(2):531537.Google Scholar
Frezier, A. 1717 [1901]. Relación del viaje por el mar del sur a las costas de Chile y el Peru durante los años 1712, 1713 i 1714. Santiago: Imprenta Mejía.Google Scholar
García, M, Vidal, A, Mandakovic, V, Maldonado, A, Peña, MP, Belmonte, E. 2014. Alimentos, tecnologías vegetales y paleoambiente en las aldeas Formativas de la Pampa del Tamarugal, Tarapacá (ca. 900 AC-800 DC). Estudios Atacameños 47:3358.Google Scholar
Hogg, AG, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(1):115.Google Scholar
Hutchinson, I, James, TS, Reimer, PJ, Bornhold, BD, Clague, JJ. 2004. Marine and limnic radiocarbon reservoir corrections for studies of late- and postglacial environments in Georgia Basin and Puget Lowland, British Columbia, Canada and Washington, USA. Quaternary Research 61(2):193203.Google Scholar
Latorre, C, De Pol-Hoz, R, Carter, C, Santoro, C. 2015. Using archaeological shell middens as a proxy for past local coastal upwelling in northern Chile. Quaternary International 30:1e9.Google Scholar
López, P, Cartajena, I, Núñez, L. 2013. Análisis de isótopos estables en colágeno de huesos de camélidos de Quebrada de Tulán Puna de Atacama, Período Formativo Temprano (ca. 3100–2400 AP). Chungara 45:237247.Google Scholar
Julien, C. 1985. Guano and resource control in sixteenth century Arequipa. In: Masuda S, Shimada I, Morris C, editors. Andean Ecology and Civilization. Tokyo: University of Tokyo Press. p 185231.Google Scholar
Moragas, C. 1995. Desarrollo de las comunidades prehispánicas del litoral Iquique-desembocadura Río Loa. Hombre y Desierto 9(1):6580.Google Scholar
Murra, J. 1972. El “control vertical” de un máximo de pisos ecológicos en la economía de las sociedades andinas. En Formaciones Económicas del Mundo Andino. Lima: Instituto de Estudios Peruanos.Google Scholar
Núñez, L. 1965. Desarrollo cultural prehispánico en el norte de Chile. Estudios Arqueológicos 1:936.Google Scholar
Núñez, L. 1976. Registro nacional de fechas radiocarbónicas del norte de Chile. Estudios Atacameños 4:69111.Google Scholar
Núñez, L. 1984. Tráfico de Complementariedad de Recursos entre las Tierras Altas y el Pacífico en el Área Centro Sur Andina [PhD thesis]. Tokyo: University of Tokyo.Google Scholar
Núñez, L, Dillehay, T. 1995 [1979]. Movilidad Giratoria, Armonía Social y Desarrollo en los Andes Meridionales: Patrones de Tráfico e Interacción Económica. Antofagasta: Universidad Católica del Norte.Google Scholar
Ortlieb, L. et al. 2011. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75:91103.Google Scholar
Owen, BD. 2002. Marine carbon reservoir age estimates for the far south coast of Peru. Radiocarbon 44(3):701708.Google Scholar
Pacheco, A, Retamal, R. 2017. Avoiding war in Tarapacá (northern Chile) during the Andean Late Intermediate Period (AD 1000-1400). International Journal of Osteoarchaeology 27:3544.Google Scholar
Parsons, J, Psutty, N. 1975. Sunken fields and Prehispanic subsistence on the Peruvian coast. American Antiquity 40:259282.Google Scholar
Price, TD, Ambrose, SH, Bennike, P, Heinemeier, J, Noe-Nygaard, N, Brinch Petersen, E, Vang Petersen, P, Richards, M. 2007. New information on the Stone Age graves at Dragsholm, Denmark. Acta Archaeologica 78(2):193219.Google Scholar
Retamal, R, Pacheco, A, Uribe, M. 2012. Dimorfismo sexual, distribución etaria y longevidad del cementerio Pica 8 (Período Intermedio Tardío, 950-1450 DC, Norte Grande de Chile). Estudios Atacameños 44:89106.CrossRefGoogle Scholar
Santana, F, Herrera, MJ, Uribe, M. 2012. Acercamiento a la paleodieta en la costa y quebradas tarapaqueñas durante el Período Formativo: Análisis de isótopos estables a partir de tres casos de estudio. Boletín de la Sociedad Chilena de Arqueología 41–42:109126.Google Scholar
Santana-Sagredo, F, Lee-Thorp, JA, Schulting, RJ, Uribe, M. 2015a. Isotopic evidence for divergent diets and mobility patterns in the Atacama Desert during the Late Intermediate Period (AD 900–1450). American Journal of Physical Anthropology 156:374387.Google Scholar
Santana-Sagredo, F, Uribe, M, Herrera, MJ, Retamal, R, Flores, S. 2015b. Dietary practices in ancient populations from northern Chile during the transition to agricultura (Tarapacá region, 1000 BC–AD 900). American Journal of Physcical Anthropology 158:751758.Google Scholar
Schiappacasse, V, Castro, V, Niemeyer, H. 1989. Los Desarrollos Regionales en el Norte Grande. In: Hidalgo J, Aldunate C, Solimano I, editors. Culturas de Chile, Prehistoria. Santiago: Andrés Bello. p 181220.Google Scholar
Schulting, RJ, Bronk Ramsey, C, Goriunova, OI, Bazaliiskii, VI, Weber, A. 2014. Freshwater reservoir offsets investigated through paired human–faunal 14C dating and stable carbon and nitrogen isotope analysis at Lake Baikal, Siberia. Radiocarbon 56(3):9911008.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.Google Scholar
Stuiver, M, Pearson, GW, Brazuinas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 46(1):387394.Google Scholar
Szpak, P, Millaire, JF, White, CD, Longstaffe, FJ. 2012a. Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archeological Science 39:37213740.Google Scholar
Szpak, P, Longstaffe, FJ, Millaire, JF, White, C. 2012b. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studues with maize (Zea mays). Plos one 7:e33741.Google Scholar
Szpak, P, Longstaffe, FJ, Millaire, JF, White, C. 2014. Large variation in nitrogen isotopic composition of a fertilized legume. Journal of Archaeological Science 45:7279.Google Scholar
Tieszen, L, Chapman, M. 1992. Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama Desert of Northern Chile. Proceedings of the First World Congress of Mummy Studies. Tenerife: Museo Arqueológico de Tenerife. p 409425.Google Scholar
Uribe, M. 2006. Acerca de cpmplejidad, desigualdad social y el complejo cultural Pica-Tarapacá en los Andes Centro-Sur (1000–1450 d.C.). Estudios atacameños 31:91114.Google Scholar
Uribe, M, Sanhueza, L, Bahamondes, F. 2007. La cerámica prehispánica tardía de Tarapacá, sus valles interiores y costa desértica, Norte de Chile (ca. 900–1450 D.C.): una propuesta tipológica y cronológica. Chungara 39:143170.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing radiocarbon age determinations: a critique. Archaeometry 20:1931.Google Scholar
Zlatar, V. 1984. Cementerio Prehispánico Pica 8. Antofagasta: Universidad de Antofagasta.Google Scholar