Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T19:57:01.732Z Has data issue: false hasContentIssue false

On a Plausible Physical Mechanism Linking the Maunder Minimum to the Little Ice Age

Published online by Cambridge University Press:  18 July 2016

Elizabeth Nesme-Ribes
Affiliation:
CNRS, Observatoire de Paris, 92195 Meudon-Cedex, France
Andre Mangeney
Affiliation:
CNRS, Observatoire de Paris, 92195 Meudon-Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To understand better the Earth's climate, we need to know precisely how much radiation the Sun generates. We present here a simple physical mechanism describing the convective processes at the time of low sunspot activity. According to this model, the kinetic energy increased during the Maunder Minimum, causing a decrease of the solar radiation that was sufficient to produce a little Ice Age.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Belvedere, G., Proctor, M. R. E. and Lanzafame, G. 1991 The latitude belts of solar activity as a consequence of a boundary-layer dynamo. Nature 350: 481483.Google Scholar
Brown, T. M. and Morrow, C. A. 1987 Depth and latitude dependance of solar rotation. Astrophysical Journal 314: L21L26.CrossRefGoogle Scholar
Fossat, E., Gelly, B., Grec, G. and Pomerantz, M. 1987 Search for solar p-mode frequency changes between 1980 and 1985. Astronomy and Astrophysics 177: L47L48.Google Scholar
Hoeksema, J. T. 1991 Large-scale solar and heliospheric magnetic fields. Advanced Space Research 11(1): 1524.Google Scholar
Kocharov, G. E. 1986 Cosmic ray archeology, solar activity and supernova explosions. Proceedings of the Joint Varenna-Abustumani International School and Workshop on Plasma Astrophysics . USSR, Ed. ESA SP-25: 259270.Google Scholar
Labitske, K. and Van Loon, H. 1990 Associations between the 11-year solar cycle the Quasi-biennial oscillation and the atmosphere: A summary of recent work. Philosophical Transactions of the Royal Society of London A330: 577589.Google Scholar
Laclare, F. 1987 Sur les variations du diametre du Soleil observées à l'astrolabe solaire du C.E.R.G.A. Comptes Rendus de l'Académie des Sciences 305(2): 451454.Google Scholar
La Hire, P. 168 3–1718 Archives de l'Observatoire de Paris D2: 110.Google Scholar
Maunder, R. W. 1894 A prolonged sunspot minimum. Knowledge 17(106): 173176.Google Scholar
Ribes, E. 1990a Longs cycles d'activité solaire. In Benest, D. and Froschle, C., eds., Le Soleil, Une Étoile et Son Domaine, École de Goutelas : 357373.Google Scholar
Ribes, E. 1990b Astronomical determinations of the solar variability. Philosophical Transactions of the Royal Society of London 330: 487497.Google Scholar
Ribes, E. and Bonnefond, F. 1990 Magnetic tracers, a probe of the solar convective zone. Geophysical Astrophysical Fluid Dynamics 55: 241261.Google Scholar
Ribes, E. and Laclare, F. 1988 Toroidal convective rolls in the Sun: A challenge to theory. Geophysical Astrophysical Fluid Dynamics 41: 171180.Google Scholar
Ribes, E. and Mein, P. 1984 Search for giant convective cells from the analysis of Meudon spectroheliograms. In Muller, R., ed., Proceedings of the European Astronomical Meeting . Toulouse: 283288.Google Scholar
Ribes, E., Mein, P. and Mangeney, A. 1985 A large-scale meridional circulation in the convective zone. Nature 318: 170171.CrossRefGoogle Scholar
Ribes, E., Merlin, Ph., Ribes, J.-C. and Barthalot, R. 1990 Absolute periodicities in the solar diameter derived from historical and modern data. Annales Geophysicae 7(4): 321330.Google Scholar
Ribes, E., Ribes, J.-C. and Barthalot, R. 1987 Evidence for a larger Sun with a slower rotation during the seventeenth century. Nature 326: 5255.Google Scholar
Roberts, P. H. and Stewartson, K. 1974 On finite amplitude convection in a rotating magnetic system. Philosophical Transactions of the Royal Society of London A277: 287315.Google Scholar
Spruit, H. 1991 Theory of solar luminosity and solar diameter variations. In Sonett, C. and Giampapa, M., eds., The Sun In Time . Tucson, The University of Arizona Press: 118158.Google Scholar
Teitelbaum, H. and Bauer, P. 1990 Stratospheric temperature eleven years variations: Solar influence or stroboscopic effect. Annales Geophysicae 8: 239242.Google Scholar
Willson, R. C. and Hudson, H. 1991 The Sun's luminosity over a complete solar cycle. Nature 351: 4244.CrossRefGoogle Scholar