Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:28:29.381Z Has data issue: false hasContentIssue false

NotCal04—Comparison/Calibration 14C Records 26–50 Cal Kyr BP

Published online by Cambridge University Press:  18 July 2016

J van der Plicht*
Affiliation:
Center for Isotope Research, Groningen University, 9747 AG Groningen, the Netherlands. Also: Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands
J W Beck
Affiliation:
NSF-AMS Laboratory, Department of Physics, University of Arizona, Tucson, Arizona 85721, USA.
E Bard
Affiliation:
CEREGE, UMR-6635, Europole de l'Arbois BP80, 13545 Aix-en-Provence cdx 4, France
M G L Baillie
Affiliation:
School of Archaeology and Palaeoecology, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
P G Blackwell
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
C E Buck
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
M Friedrich
Affiliation:
Universität Hohenheim, Institut für Botanik-210, D-70593 Stuttgart, Germany
T P Guilderson
Affiliation:
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
K A Hughen
Affiliation:
Woods Hole Oceanographic Institution, Department of Marine Chemistry & Geochemistry, Woods Hole, Massachusetts 02543, USA.
B Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
F G McCormac
Affiliation:
School of Archaeology and Palaeoecology, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
C Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, 6 Keble Rd., Oxford OX2 6JB, United Kingdom
P J Reimer
Affiliation:
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
R W Reimer
Affiliation:
School of Archaeology and Palaeoecology, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
S Remmele
Affiliation:
Universität Hohenheim, Institut für Botanik-210, D-70593 Stuttgart, Germany
D A Richards
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom
J R Southon
Affiliation:
Department of Earth System Science, University of California-Irvine, Irvine, California 92697, USA.
M Stuiver
Affiliation:
Quaternary Isotope Lab, University of Washington, Seattle, Washington 98195, USA.
C E Weyhenmeyer
Affiliation:
Center for Accelerator Mass Spectrometry L-397, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radiocarbon calibration curve IntCal04 extends back to 26 cal kyr B P. While several high-resolution records exist beyond this limit, these data sets exhibit discrepancies of up to several millennia. As a result, no calibration curve for the time range 26–50 cal kyr BP can be recommended as yet, but in this paper the IntCal04 working group compares the available data sets and offers a discussion of the information that they hold.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Bard, E, Arnold, M, Hamelin, B, Tisnérat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E. 2001. Extending the calibrated radiocarbon record. Science 292:2443–4.Google Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon, this issue.CrossRefGoogle Scholar
Beck, JW, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292:2453–8.Google Scholar
van der Borg, K, Stein, M, de Jong, AFM, Waldmann, N, Goldstein, SL. 2004. Near-zero Δ14C values at 32 kyr cal BP observed in the high-resolution 14C record from U-Th dated sediment of Lake Lisan. Radiocarbon 46(2):785–95.Google Scholar
Buck, CE, Blackwell, PG. 2004. Formal statistical models for estimating radiocarbon calibration curves. Radiocarbon, this issue.Google Scholar
Burns, SJ, Fleitmann, D, Matter, A, Kramers, J, Al-Subbary, AA. 2003. Indian Ocean climate and Dansgaard/Oeschger Events 9 to 13. Science 301:1365–7.Google Scholar
Burns, SJ, Fleitmann, D, Matter, A, Kramers, J, Al-Subbary, AA. 2004. Corrections and clarifications. Science 305:1567.Google Scholar
Burr, GS, Beck, JW, Taylor, FW, Recy, J, Edwards, RL, Cabioch, G, Correge, T, Donahue, DJ, O'Malley, JM. 1998. A high-resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–105.CrossRefGoogle Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW Cabioch, G, Beck, JW, Récy, J, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon, this issue.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Guilderson, TP, Cao, L, Kaplan, A, Bloom, A. Forthcoming. Marine radiocarbon calibration curve spanning 7000 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews. Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, JR, Peterson, LC, Alley, R, Sigman, DM. 1998a. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, JR, Peterson, LC. 1998b. A new 14C calibration data set for the last deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, FG, Manning, SW, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004a. Marine04 marine radiocarbon age calibration, 26–0 cal kyr B P. Radiocarbon, this issue.Google Scholar
Hughen, KA, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004b. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle ScholarPubMed
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3): 369–80.Google Scholar
van Kreveld, S, Sarntheim, M, Erlenkeuser, H, Grootes, PM, Jung, S, Nadeau, MJ, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea. Paleoceanography 15:425–42.CrossRefGoogle Scholar
Libby, WF. 1955. Radiocarbon Dating. 2nd edition. Chicago: University of Chicago Press.Google Scholar
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102(C12):26,41124.Google Scholar
Mellars, P. 1998. The fate of the Neanderthals. Nature 395:539–40.Google Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, FG, Baillie, MGL, Bard, E, Barratt, P, Beck, WJ, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Ramsey, CB, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2002. Preliminary report on the first workshop of the IntCal04 Radiocarbon Calibration/Comparison Working Group. Radiocarbon 44(3):653–61.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Herring, C, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, C. 2004. IntCal04 terrestrial radiocarbon age calibration, 26–0 cal kyr BP. Radiocarbon, this issue.Google Scholar
Richards, DA, Beck, JW. 2001. Dramatic shifts in atmospheric radiocarbon during the last glacial period. Antiquity 289:482–5.Google Scholar
Richards, DA, Beck, JW, Smart, P, Hoffman, D, Mattey, D, Hawkesworth, C. 2003. Speleothems from the Bahamas and atmospheric radiocarbon during the last glacial period: recent developments. 18th International Radiocarbon Conference, Wellington, Abstracts. p 81.Google Scholar
Schramm, A, Stein, M, Goldstein, SL. 2000. Calibration of the 14C time scale to >40 ka by 234U-230Th dating of Lake Lisan sediments (last-glacial Dead Sea). Earth and Planetary Science Letters 175:2740.Google Scholar
Stringer, C, Davies, W. Those elusive Neanderthals. Nature 413:791–2.Google Scholar
Suess, HE. 1970. Radiocarbon variations and absolute chronology. In: Proceedings of the XII Nobel Symposium. New York: Wiley. p 303–11.Google Scholar
Stuiver, M, van der Plicht, J, editors. 1998. IntCal98: Calibration Issue. Radiocarbon 40(3):1041–159.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
van Andel, TH. 1998. Middle and Upper Palaeolithic environments and the calibration of 14C dates beyond 10,000 BP. Antiquity 72:2633.Google Scholar
van der Plicht, J. 1999. Radiocarbon calibration for the Middle/Upper Palaeolithic: a comment. Antiquity 279:119–23.Google Scholar
van der Plicht, J, editor. 2000a. Varve/Comparison Issue. Radiocarbon 42(3):313452.Google Scholar
van der Plicht, J. 2000b. Introduction: the 2000 Radiocarbon Varve/Comparison Issue. Radiocarbon 42(3): 313–22.Google Scholar
Voelker, AHL, Grootes, PM, Nadeau, MJ, Sarntheim, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.CrossRefGoogle Scholar
Vogel, JC, Kronfeld, J. 1997. Calibration of radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1):2732.Google Scholar
Weyhenmeyer, CE, Burns, SJ, Fleitmann, D, Kramers, JD, Matter, A, Waber, HN, Reimer, PJ. 2003. Changes in atmospheric 14C between 55 and 42 ky BP recorded in a stalagmite from Socotra Island, Indian Ocean. Eos Transactions AGU 84 (46): Fall Meeting Supplement Abstract PP32B-0298.Google Scholar