Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T21:41:23.927Z Has data issue: false hasContentIssue false

Non-Destructive Portable Analytical Techniques for Carbon In Situ Screening Before Sampling for Dating Prehistoric Rock Paintings

Published online by Cambridge University Press:  09 February 2016

Lucile Beck*
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette, France C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Dominique Genty
Affiliation:
LSCE, UMR CEA/CNRS 8212, L'Orme des Merisiers CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
Sophia Lahlil
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Matthieu Lebon
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France Muséum National d'Histoire Naturelle, Département de Préhistoire, UMR 7194, 1 rue René Panhard, 75013 Paris, France
Florian Tereygeol
Affiliation:
LAPA SIS2M UMR 3299 CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
Colette Vignaud
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Ina Reiche
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Elsa Lambert
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Hélène Valladas
Affiliation:
LSCE, UMR CEA/CNRS 8212, L'Orme des Merisiers CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
Evelyne Kaltnecker
Affiliation:
LSCE, UMR CEA/CNRS 8212, L'Orme des Merisiers CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
Frédéric Plassard
Affiliation:
S.A.R.L. Grotte de Rouffignac, 24580 Rouffignac-Saint-Cernin, France and Université de Bordeaux, PACEA, UMR 5199, 33400 Talence Cedex, France
Michel Menu
Affiliation:
C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001 Paris, France
Patrick Paillet
Affiliation:
Muséum National d'Histoire Naturelle, Département de Préhistoire, UMR 7194, 1 rue René Panhard, 75013 Paris, France
*
Corresponding author. Email: [email protected].

Abstract

Direct dating of prehistoric paintings is playing a major role in Paleolithic art studies. Very few figures can be directly dated since the necessary condition is that they contain organic carbon-based material. Thus, it is very important to check the presence of organic carbon-based material in situ before sampling in order to protect the visual integrity of the paintings or drawings. We have tested and compared 3 different portable analytical systems that can be used in cave environments for detecting carbon in prehistoric paintings: (1) a very compact X-ray fluorescence (XRF) system in Villars Cave (Dordogne, France); (2) a portable micro-Raman spectrometer in Rouffignac Cave (Dordogne, France); and (3) an infrared reflectography camera in both caves. These techniques have been chosen for their non-destructiveness: no sample has to be taken from the rock surface and no contact is made between the probes and the paintings or drawings. The analyses have shown that all the animal figures have been drawn with manganese oxides and cannot be directly dated by radiocarbon. However, carbon has been detected in several spots such as black dots and lines and torch marks. 14C results were obtained from 5 torch marks selected in Villars Cave, with ages between 17.1–18.0 ka cal BP. Three methods were used to identify carbon in black pigments or to confirm the presence of torch marks by carbon detection. Thanks to these new analytical developments, it will be now possible to select more accurately the samples to be taken for 14C dating prehistoric paintings and drawings.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baffier, D, Girard, M, Menu, M, Vignaud, C. 1999. Color at the Grande Grotte, Arcy-Sur-Cure (Yonne, France). L'Anthropologie 103:121.Google Scholar
Barrière, Cl. 1982. L'art pariétal de Rouffignac. Paris: Picard. 208 p.Google Scholar
Beck, L, Rousselière, H, Castaing, J, Duran, A, Lebon, M, Lahlil, S, Plassard, F. 2012. Analyse in situ des dessins préhistoriques de la grotte de Rouffignac par fluorescence X et diffraction X portable. ArchéoSciences 36:139–52.Google Scholar
Chalmin, E, Sansot, E, Orial, G, Bousta, F, Reiche, I. 2008. Microanalysis and synthesis of calcite. Growth mechanisms on prehistoric paintings in the Large Cave, Arcy-sur-Cure (Yonne, France). X-Ray Spectrometry 37(4):424–34.CrossRefGoogle Scholar
Clottes, J, Menu, M, Walter, P. 1990. La préparation des peintures magdaléniennes des cavernes ariégeoises. Bulletin de la Société Préhistorique Française 87:170–92.CrossRefGoogle Scholar
Delluc, B, Delluc, G. 1974. La grotte ornée de Villars. Gallia Préhistoire 17:167.Google Scholar
de Sanoit, J, Chambellan, D, Plassard, F. 2005. Caractérisation in situ du pigment noir de quelques œuvres pariétales de la Grotte de Rouffignac à l'aide d'un système portable d'analyse par fluorescence X (XRF). ArchéoSciences 29:6198.CrossRefGoogle Scholar
Genty, D, Valladas, H, Beck, L, Téreygeol, F, Delluc, B, Delluc, G, Regnier, E, Baritaud, T, Hellstrom, J, Blamart, DC, Kaltnecker, E, Moreau, C, Dumoulin, JP. In press. La grotte de Villars: données chronologiques de l'occupation humaine et contexte environnemental. PALEO.Google Scholar
Hernanz, A, Gavira-Vallejo, JM, Ruiz-López, JF. 2006. Introduction to Raman microscopy of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. Journal of Raman Spectroscopy 37(10):1054–62.Google Scholar
Hernanz, A, Gavira-Vallejo, JM, Ruiz-López, JF, Edwards, HGM. 2008. A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. Journal of Raman Spectroscopy 39(8):972–84.CrossRefGoogle Scholar
Lahlil, S, Lebon, M, Beck, L, Rousselière, H, Vignaud, C, Reiche, I, Menu, M, Paillet, P, Plassard, F. 2012. The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. Journal of Raman Spectroscopy 43(11):1637–43.CrossRefGoogle Scholar
Menu, M, Vignaud, C. 2006. L'analyse des techniques des peintres de Lascaux. Monumental. p 98103.Google Scholar
Menu, M, Walter, P. 1992. Prehistoric cave painting PIXE analysis for the identification of paint “pots.” Nuclear Instruments and Methods in Physics Research B 64(1–4):547–52.CrossRefGoogle Scholar
Menu, M, Walter, P, Vigears, D, Clottes, J. 1993. Façons de peindre au Magdalénien: Niaux (Ariège). Bulletin de la Société Préhistorique Française 90:426–32.CrossRefGoogle Scholar
Moissan, H. 1902. Sur les matière colorantes de figures de la grotte de Font-de-Gaume. Compte rendus de l'Académie des sciences 134:1536–40.Google Scholar
Olivares, M, Castro, K, Corchón, MS, Gárate, D, Murelaga, X, Sarmiento, A, Etxebarria, N. 2013. Non-invasive portable instrumentation to study Palaeolithic rock paintings: the case of La Peña Cave in San Roman de Candamo (Asturias, Spain). Journal of Archaeological Science 40(2):1354–60.CrossRefGoogle Scholar
Ospitali, F, Smith, DC, Lorblanchet, M. 2006. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. Journal of Raman Spectroscopy 37(10):1063–71.CrossRefGoogle Scholar
Plassard, J. 1999. Rouffignac, le sanctuaire des mammouths. Paris: Le seuil. 96 p.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Ricciardi, P, Colomban, P, Tournié, A, Milande, V. 2009. Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries? Journal of Raman Spectroscopy 40(6):604–17.CrossRefGoogle Scholar
Tomasini, EP, Halac, EB, Reinoso, M, Di Liscia, EJ, Maier, MS. 2012. Micro-Raman spectroscopy of carbon-based black pigments. Journal of Raman Spectroscopy 43(11):1671–5.CrossRefGoogle Scholar
Tournié, A, Prinsloo, LC, Paris, C, Colomban, P, Smith, B. 2010. The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. Journal of Raman Spectroscopy 42(3):399–406.Google Scholar
Valladas, H, Cachier, H, Maurice, P, Bernaldo De Quiros, F, Clottes, J, Cabrera Valdes, V, Uzquiano, P, Arnold, M. 1992. Direct radiocarbon dates for prehistoric paintings at the Altamira, El Castillo and Niaux caves. Nature 357(6373):6870.CrossRefGoogle Scholar
Valladas, V, Tisnérat-Laborde, N, Cachier, H, Arnold, M, Bernaldo de Quirós, F, Cabrera-Valdés, V, Clottes, J, Courtin, J, Fortea-Pérez, J J, Gonzáles-Sainz, C, Moure-Romanillo, A. 2001. Radiocarbon AMS dates for Paleolithic cave paintings. Radiocarbon 43(2B):977–86.CrossRefGoogle Scholar
de Boer, JRJ van Asperen. 1968. Infrared reflectography: a method for the examination of paintings. Applied Optics 7(9):1711–4.Google Scholar