Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T23:29:29.259Z Has data issue: false hasContentIssue false

New Single-Year Radiocarbon Measurements Based on Danish oak Covering the Periods AD 692–790 and 966–1057

Part of: IntCal 20

Published online by Cambridge University Press:  12 December 2019

Sabrina G K Kudsk
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Bente Philippsen
Affiliation:
Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark Centre for Urban Networks Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, DK-8270 Højbjerg, Denmark
Claudia Baittinger
Affiliation:
Environmental Archaeology and Materials Science, National Museum of Denmark, IC Modewegs Vej, Brede, DK-2800 Kgs. Lyngby, Denmark
Alexandra Fogtmann-Schulz
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Mads F Knudsen
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark
Christoffer Karoff
Affiliation:
Institute for Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, DK-8000 Aarhus C, Denmark Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
Jesper Olsen*
Affiliation:
Aarhus AMS Centre (AARAMS), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark Centre for Urban Networks Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, DK-8270 Højbjerg, Denmark
*
*Corresponding author. Email: [email protected].

Abstract

Single-year measurements of radiocarbon (14C) in tree rings have led to the discovery of rapid cosmic-ray events as well as longer lasting anomalies, which have given new insights into the Sun’s behavior in the past. Here, we present two new single-year 14C records based on Danish oak that span the periods AD 692–790 and 966–1057, respectively, and consequently include the two rapid cosmic-ray events in AD 775 and 994. The new data are presented along with relevant information on the dendrochronological dating of the wood pieces, implying that these new measurements may contribute towards generating the next international calibration curve. The new data covering the AD 966–1057 period suggest that the increase in atmospheric 14C associated with the cosmic-ray event in AD 994 actually occurred in AD 993, i.e. one year earlier than the year reported in Fogtmann-Schulz et al. (2017) based on oak from southern Denmark. Careful reanalysis of the dendrochronology that underpins the new 14C records based on oak material from southern Denmark reveals that the cosmic-ray event reported in Fogtmann-Schulz et al. (2017) actually took place in AD 993.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baillie, M, Pilcher, J. 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Baittinger, C. 2009. Præliminær dendrokronologisk undersøgelse II af træprøver fra Ravning Enge. Nationalmuseets Naturvidenskabelige Undersøgelser NNU rapport 3.Google Scholar
Bevington, PR, Robinson, DK. 2003. Data reduction and error analysis for the physical sciences. 3rd ed. Boston (MA): McGraw-Hill.Google Scholar
Bonde, N. 1992. Dendrokronologisk undersøgelse af træprøver fra spærring i Haderslev Fjord Nationalmuseets Naturvidenskabelige Undersøgelser NNU rapport 14.Google Scholar
Damon, PE, Kaimei, D, Kocharov, GE, Mikheeva, IB, Peristykh, AN. 1995. Radiocarbon production by the gamma-ray component of supernova explosions. Radiocarbon 37(2):599604.CrossRefGoogle Scholar
Dee, M, Pope, B, Miles, D, Manning, S, Miyake, F. 2017. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59(2):293302.CrossRefGoogle Scholar
Eriksen, OH. 1998. Dendrokronologisk undersøgelse af træ fra udgravning ved Gråbrødre kloster, Randers. Dendrokronologisk Laboratorium NNU rapport 38.Google Scholar
Eriksen, OH. 1999. ”Østergård”, Haderslev Amt. Dendrokronologisk Laboratorium NNU rapport 24.Google Scholar
Eriksen, OH. 2004. Dendrokronologisk undersøgelse af træ fra vadested ved Mojbøl i Sønderjyllands amt. Nationalmuseets Naturvidenskabelige Undersøgelser NNU rapport 2.Google Scholar
Fogtmann-Schulz, A, Østbø, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophysical Research Letters 44:86218628.CrossRefGoogle Scholar
Gray, LJ, Beer, J, Geller, M, Haigh, JD, Lockwood, M, Matthes, K, Cubasch, U, Fleitmann, D, Harrison, G, Hood, L, et al. 2010. Solar influence on climate. Reviews of Geophysics 48:RG4001.CrossRefGoogle Scholar
Güttler, D, Wacker, L, Kromer, B, Friedrich, M, Synal, H-A. 2013. Evidence of 11-year solar cycles in tree-rings from 1010 to 1110 AD – progress on high precision AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:459463.CrossRefGoogle Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, J, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.CrossRefGoogle Scholar
Jacobsson, P, Hamilton, WD, Cook, G, Crone, A, Dunbar, E, Kinch, H, Naysmith, P, Tripney, B, Xu, S. 2017. Refining the Hallstatt Plateau: short-term 14C variability and small scale offsets in 50 consecutive single tree-rings from southwest Scotland dendro-dated to 510–460 BC. Radiocarbon 60(1):219237.CrossRefGoogle Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at AD 774–775 in tree rings from Russia and America. Geophysical Research Letters 41:30043010.CrossRefGoogle Scholar
Jull, AJT, Panyuskina, I, Miyake, F, Masuda, K, Nakamura, T, Mitsutani, T, Lange, TE, Cruz, RJ, Baisan, C, Janovic, R, Varga, T, Molnár, M. 2018. More rapid 14C excursions in the tree-ring record: a record of different kind of solar activity at about 800 BC? Radiocarbon 60(4):12371248.CrossRefGoogle Scholar
Kudsk, S, Olsen, J, Nielsen, L, Fogtmann-Schulz, A, Knudsen, M, Karoff, C. 2018. What is the carbon origin of early-wood? Radiocarbon 60(5):14571464.CrossRefGoogle Scholar
Loader, NJ, Robertson, I, Barker, AC, Switsur, VR, Waterhouse, JS. 1997. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chemical Geology 136:313317.CrossRefGoogle Scholar
Marshall, P, Bayliss, A, Farid, S, Tyers, C, Bronk Ramsey, C, Cook, G, Doğan, T, Freeman, SPHT, İlkmen, E, Knowles, T. 2018. 14C wiggle-matching of short tree-ring sequences from post-medieval buildings in England. Nuclear Instruments and Methods in Physics Research B. in press.CrossRefGoogle Scholar
Menjo, H, Miyahara, H, Kuwana, K, Masuda, K, Nakamura, T. 2005. Possibility of the detection of past supernova explosion by radiocarbon measurement. 29th International Cosmic Ray Conference Pune 2:357–360.Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.CrossRefGoogle ScholarPubMed
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4.Google ScholarPubMed
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T, Tokanai, F, Kato, K, Kimura, K, Mitsutani, T. 2014. Verification of the Cosmic-Ray Event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11891194.CrossRefGoogle Scholar
Miyake, F, Jull, AJT, Panyushkina, IP, Wacker, L, Salzer, M, Baisen, CH, Lange, T, Cruz, R, Masuda, K, Nakamura, T. 2017a. Large 14C excursion in 5480 BC indicates and abnormal sun in the mid-Holocene. PNAS 114(5):881884.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T, Kimura, K, Hakozaki, M, Jull, A, Lange, TE, Cruz, R, Panyushkina, IP, Baisan, C, Salzer, MW. 2017b. Search for annual 14C excursions in the past. Radiocarbon 59(2):315320.CrossRefGoogle Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2017. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59(3):905913.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pearson, CL, Brewer, PW, Brown, D, Heaton, TJ, Hodgins, GWL, Jull, AJT, Lange, T, Salzer, MW. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4(8):eaar8241.CrossRefGoogle ScholarPubMed
Rakowski, AZ, Krąpiec, M, Huels, M, Pawlyta, J, Dreves, A, Meadows, J., 2015. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:564–8.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Sakamoto, M, Imamura, M, Van der Plicht, J, Mitsutani, T, Sahara, M. 2003. Radiocarbon calibration for Japanese wood samples. Radiocarbon 45(1):8189.CrossRefGoogle Scholar
Sakamoto, M, Hakozaki, M, Nakao, N, Nakatsuka, T. 2017. Fine structure and reproducibility of radiocarbon ages of middle to early modern Japanese tree rings. Radiocarbon 59(6):19071917.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Tyers, I. 1999. DENDRO for Windows Program Guide. Sheffield, U.K.: University of Sheffield; ARCUS report 500.Google Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltso, GA, Solanki, SK, Wacker, L. 2013. The AD 775 cosmic event revisited: the Sun is to blame. Astronomy & Astrophysics 552:L3.CrossRefGoogle Scholar
Wacker, L, Güttler, D, Goll, J, Hurni, JP, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579.CrossRefGoogle Scholar
Wang, FY, Yu, H, Zou, YC, Dai, ZG, Cheng, KS. 2017. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree-rings in China. Nature Communications 8:1487.CrossRefGoogle Scholar
Supplementary material: File

Kudsk et al. supplementary material

Kudsk et al. supplementary material

Download Kudsk et al. supplementary material(File)
File 27.9 KB