Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-18T23:57:04.924Z Has data issue: false hasContentIssue false

A New 14C Calibration Data Set for the Last Deglaciation Based on Marine Varves

Published online by Cambridge University Press:  18 July 2016

Konrad A. Hughen
Affiliation:
INSTAAR and Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA
Jonathan T. Overpeck
Affiliation:
INSTAAR and Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA NOAA Paleoclimatology Program, National Geophysical Data Center, Boulder, Colorado 80303, USA
Scott J. Lehman
Affiliation:
INSTAAR and Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA
Michaele Kashgarian
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
John R. Southon
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
Larry C. Peterson
Affiliation:
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Varved sediments of the tropical Cariaco Basin provide a new 14C calibration data set for the period of deglaciation (10,000 to 14,500 years before present: 10–14.5 cal ka bp). Independent evaluations of the Cariaco Basin calendar and 14C chronologies were based on the agreement of varve ages with the GISP2 ice core layer chronology for similar high-resolution paleoclimate records, in addition to 14C age agreement with terrestrial 14C dates, even during large climatic changes. These assessments indicate that the Cariaco Basin 14C reservoir age remained stable throughout the Younger Dryas and late Allerød climatic events and that the varve and 14C chronologies provide an accurate alternative to existing calibrations based on coral U/Th dates. The Cariaco Basin calibration generally agrees with coral-derived calibrations but is more continuous and resolves century-scale details of 14C change not seen in the coral records. 14C plateaus can be identified at 9.6, 11.4, and 11.7 14C ka bp, in addition to a large, sloping “plateau” during the Younger Dryas (∼10 to 11 14C ka bp). Accounting for features such as these is crucial to determining the relative timing and rates of change during abrupt global climate changes of the last deglaciation.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A. and Zielinski, G. A. 1993 Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527529.Google Scholar
Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and 14C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.Google Scholar
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M.-A., Sønstegaard, E. and Duplessy, J.-C. 1994 The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126: 275287.Google Scholar
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G. and Rougerie, F. 1996 Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382: 241244.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados Corals. Nature 345: 405410.CrossRefGoogle Scholar
Becker, B. 1993 An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 201213.Google Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353: 647649.CrossRefGoogle Scholar
Behl, R. J. and Kennett, J. P. 1996 Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379: 243246.Google Scholar
Bender, M., Sowers, T., Dickson, M.-L., Orchardo, J., Grootes, P., Mayewski, P.A. and Meese, D.A. 1994 Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372: 663666.Google Scholar
Broecker, W. S. and Peng, T.-H. 1982 Tracers in the Sea. New York, Columbia University: 690 p.Google Scholar
Denton, G. H., and Hendy, C. H. 1994 Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264: 14341437.Google Scholar
Deuser, W. G. 1973 Cariaco Trench: Oxidation of organic matter and residence time of anoxic water. Nature 242: 601603.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages in corals. Science 260: 962968.CrossRefGoogle ScholarPubMed
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Rózanski, K., Tisnerat, N., Walanus, A., Wicik, B. and Wieckowski, K. 1995 High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377: 414417.CrossRefGoogle Scholar
Hajdas, I., Ivy, S., Beer, J., Bonani, G., Imboden, D., Lotter, A., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Climate Dynamics 9: 107116.Google Scholar
Hajdas, I., Zolitschka, B., Ivy-Ochs, S. D., Beer, J., Bonani, G., Leroy, S., Negendank, J. W., Ramrath, M. and Suter, M. 1995 AMS radiocarbon dating of annually-laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14: 137143.CrossRefGoogle Scholar
Holman, K. J. and Rooth, C. G. H. 1990 Ventilation of the Cariaco Trench, a case of multiple source competition? Deep-Sea Research 37: 203225.Google Scholar
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Southon, J., Peterson, L. C., Alley, R. and Sigman, D. M. 1998 Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391: 6568.Google Scholar
Hughen, K. A., Overpeck, J. T., Peterson, L. C. and Anderson, R. F. 1996a The nature of varved sedimentation in the Cariaco Basin, Venezuela, and its palaeoclimatic significance. In Kemp, A. E. S., ed., Palaeoclimatology and Palaeoceanography from Laminated Sediments. London, The Geological Society: 258 p.Google Scholar
Hughen, K. A., Overpeck, J. T., Peterson, L. C. and Trambore, S. 1996b Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380: 5154.CrossRefGoogle Scholar
Ingram, B. L. and Southon, J. R. 1996 Reservoir ages in Eastern Pacific coastal and estuarine waters. Radiocarbon 38(3): 573582.Google Scholar
Jacobson, G. L. Jr., Webb, T. III, and Grimm, E. C. 1987 Patterns and rates of vegetation change during the deglaciation of eastern North America. In Ruddiman, W. F. and Wright, H. E. Jr., eds., North America and Adjacent Oceans during the Last Deglaciation. The Geology of North America, Vol. K–3. Boulder, Colorado, Geological Society of America: 277288.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200 BC to 9439 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.Google Scholar
Linick, T. W., Long, A., Damon, P. E. and Ferguson, C. W. 1986 High-precision radiocarbon dating of bristlecone pine from 6554 to 5350 BC. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 943–953.Google Scholar
Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser, A., Heusser, L. E., Schluchter, C., Marchant, D. R. and Denton, G. H. 1995 Interhemispheric correlation of Late Pleistocene glacial events. Science 269: 15411549.Google Scholar
Overpeck, J. T. 1987 Pollen time series and Holocene climate variability of the Midwest United States. In Berger, W. H. and Labeyrie, L. D., eds., Abrupt Climatic Change–Evidence and Implications. Dordrecht, D. Reidel: 137143.Google Scholar
Overpeck, J. T., Bartlein, P. J. and Webb, T. III 1991 Potential magnitude of future vegetation change in eastern North America: Comparisons with the past. Science 254: 692695.Google Scholar
Overpeck, J. T., Peterson, L. C., Kipp, N., Imbrie, J. and Rind, D. 1989 Climate change in the circum-North Atlantic region during the last deglaciation. Nature 338: 553557.CrossRefGoogle Scholar
Paillard, D. 1996 Macintosh program makes time-series analysis easy. EOS 77: 379.Google Scholar
Peterson, L. C., Overpeck, J. T., Kipp, N. G. and Imbrie, J. 1991 A high-resolution Late Quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6: 99119.CrossRefGoogle Scholar
Rind, D., Peteet, D., Broecker, W. S., McIntyre, A. and Ruddiman, W. 1986 The impact of cold North Atlantic sea surface temperatures on climate: Implications for the Younger Dryas cooling (11–10 k). Climate Dynamics 1: 333.CrossRefGoogle Scholar
Schiller, A., Mikolajewicz, U. and Voss, R. 1997 The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dynamics 13: 325347.Google Scholar
Slowey, N. C. and Curry, W. B. 1992 Enhanced ventilation of the North Atlantic subtropical gyre thermocline during the last gelaciation. Nature 358: 665668.Google Scholar
Stineman, R. W. 1980 A consistently well-behaved method of interpolation. Creative Computing (July 1980): 5457.Google Scholar
Stuiver, M. 1970 Long-term 14C variations. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology. New York, Wiley: 197213.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic, and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35: 124.CrossRefGoogle Scholar
Stuiver, M., Kromer, B., Becker, B. and Ferguson, C. W. 1986 Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German oak and US bristlecone pine chronologies. In Stuiver, M. and Kra, R., eds., Calibration Issue. Radiocarbon 28(2B): 969–979.Google Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Wohlfarth, B. 1996 The chronology of the last termination: A review of radiocarbon-dated, high-resolution terrestrial stratigraphies. Quaternary Science Reviews 15: 267284.Google Scholar