Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-19T03:28:11.883Z Has data issue: false hasContentIssue false

Monitoring the Presence of Humic Substances in Wool and Silk by the Use of Nondestructive Fluorescence Spectroscopy: Quality Control for 14C Dating of Wool and Silk

Published online by Cambridge University Press:  18 July 2016

Mathieu Boudin*
Affiliation:
Royal Institute for Cultural Heritage, B-1000 Brussels, Belgium. Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent, Belgium.
Pascal Boeckx
Affiliation:
Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent, Belgium.
Peter Vandenabeele
Affiliation:
Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium.
Sylvia Mitschke
Affiliation:
Curt-Engelhorn Stiftung fur die Reiss-Engelhorn–Museen, C5 Zeughaus, 68159 Mannheim, Germany.
Mark VAN Strydonck
Affiliation:
Royal Institute for Cultural Heritage, B-1000 Brussels, Belgium.
*
Corresponding author: [email protected]; [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dating of degraded wool and silk provides 14C results of questionable reliability. In most cases, degraded wool/silk contains humic substances (HSs). Thus, a nondestructive fluorescence spectroscopy method, using a fiberoptic probe, was developed to monitor the presence of HSs in degraded wool and silk. This method can provide information about the presence of HSs before and after pretreatment and about the 14C age reliability. This study suggests considering with care wool/silk samples 14C dating wherein HSs are detected, because the conventional solvent pretreatment method using a NaOH wash is in most cases not sufficient to remove all humic substance contaminants. As a result, unreliable 14C dates can be provided.

Type
Articles
Copyright
Copyright © 2011 The Arizona Board of Regents on behalf of the University of Arizona 

References

Alon, D, Mintz, G, Cohen, I, Weiner, S, Boaretto, E. 2002. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: quality control for 14C dating of charcoal. Radiocarbon 44(1):111.Google Scholar
Bachelier, G. 1980–1981. Étude spectrographique de la fluorescence des acids humiques et des acides fulviques de divers sols. Cahiers ORSTOM, série Pédologie 18(2):129–45.Google Scholar
Bohme-Schonberger, A, Mitschke, S. 2005. Die romischen Stoffe aus Mainz. Archaeological Textiles Newsletter 41:22–4.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Clarke, M. 2002. Limitations of fluorescence spectroscopy as a tool for non-destructive in situ identification of organic pigments, dyes and inks. In: Van Grieken, R, Janssens, K, Van't dack, L, Meersman, G, editors. Proceedings 7th International Conference on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage (Art 2002). University of Antwerp.Google Scholar
Cronyn, JM. 2001. The deterioration of organic materials. In: Brothwell, DR, Pollard, AM, editors. Handbook of Archaeological Sciences. New York: Wiley Interscience. p 627–36.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–9.Google Scholar
Gillard, RD, Hardman, SM, Thomas, RG, Watkinson, DE. 1994. The mineralization of fibres in burial environments. Studies in Conservation 39:132–40.Google Scholar
Grömer, K. 2005. The textiles from the prehistoric saltmines at Hallstatt. In: Bichler, P, Grömer, K, Hofmannde Keijzer, R, Kern, A, Reschreiter, H, editors. Hallstatt Textiles: Technical Analysis, Scientific Investigation and Experiment on Iron Age Textiles. British Archaeological Reports International Series 1351. Oxford: Archaeopress. p 1740.Google Scholar
Haneca, K, Dewilde, M, Ervynck, A, Boeren, I, Beeckman, H, Goetghebeur, P, Wyffels, F. 2009. De ‘houten eeuw’ van een Vlaamse stad. Archeologisch en dendrochronologisch onderzoek in Ieper (prov. West-Vlaanderen). Relicta 4:99133.Google Scholar
Head, MJ. 1987. Categorisation of organic sediments from archaeological sites. In: Ambrose, WR, Mummery, JMJ, editors. Archaeometry: Further Australian Studies. Department of Prehistory, Research School of Pacific Studies, ANU, Canberra. p 143–59.Google Scholar
Herbst, W, Hunger, K. 1997. Industrial organic pigments. Production, properties, applications. Journal of American Institute of Conservation 45:107–25.Google Scholar
Holme, I. 2006. Sir William Henry Perkin: a review of his life, work and legacy. Coloration Technology 122(5):235–51.CrossRefGoogle Scholar
Janaway, RC. 1985. Dust to dust: the preservation of textile materials in metal artefact corrosion products with reference to inhumation graves. Science and Archaeology 27:2934.Google Scholar
Kars, H, Smit, A. 2003. Handleiding fysiek behoud archeologisch erfgoed. Degradatiemechanismen in sporen en materialen. Monitoring van de conditie van het bodemarchief. In: Aalbersberg, G, Burke, E, Kars, H, editors. Geoarchaeological and Bioarchaeological Studies 1. Amsterdam: Vrije Universiteit. p 1109.Google Scholar
Kim, KJ, Southon, J, Imamura, M, Sparks, R. 2008. Development of sample pretreatment of silk for radiocarbon dating. Radiocarbon 50(1):131–8.Google Scholar
Lakowicz, JR. 1999. Introduction to fluorescence. In: Lakowicz, JR, editor. Principles of Fluorescence Spectroscopy. 2nd edition. New York: Springer. p 124.Google Scholar
Lawaetz, AJ, Stedmon, CA. 2009. Fluorescence intensity calibration using the Raman scatter peak of water. Applied spectroscopy 63(8):936–40.Google Scholar
Lefève, R. 1959. Onderzoek van de Merovingische textielrestn uit Beerlegem. Bulletin Koninklijk Instituut voorKunstpatrimonium 2:152–7.Google Scholar
McCullagh, JSO, Marom, A, Hedges, REM. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52(2–3):620–34.Google Scholar
Millington, K, Kirschenbaum, L. 2002. Crosslinking and visible fluorescence in fibrous proteins. 25th Australasian Polymer Symposium, Armidale. Paper B9/1.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Roosens, H. 1959. Houten VII-eeuwse grafkamer met vrouwensieraden te Beerlegem. Bulletin Koninklijk Instituut voor Kunstpatrimonium 2:138–51.Google Scholar
Roosens, H. 1977. Dendrochronologie van graf 111 van Beerlegem. Archaeologica Belgica 196:60–2.Google Scholar
Sashina, ES, Bochek, AM, Novoselov, NP, Kirichenko, DA. 2006. Structure and solubility of natural silk fibroin. Russian Journal of Applied Chemistry 79(6):869–76.CrossRefGoogle Scholar
Sibley, LR, Jakes, KA. 1984. Survival of protein fibres in archaeological contexts. Science and Archaeology 26:1727.Google Scholar
Simpson, AJ, Boersma, RE, Kingery, WL, Hicks, RP, Hayes, MHB. 1997. Applications of NMR spectroscopy for studies of the molecular compositions of humic substances. In: Hayes, MHB, Simpson, AJ, editors. Humic Substances, Peats and Sludges: Health and Environmental Aspects. Cambridge: The Royal Society of Chemistry. p 4663.Google Scholar
Smith, CI, Fuller, BT, Choy, K, Richards, MP. 2009. A three-phase liquid chromatographic method for δ13C analysis of amino acids from biological protein hydrolysates using liquid chromatography-isotope ratio mass spectrometry. Analytical Biochemistry 390:165–72.Google Scholar
Smith, GJ. 1995. New trends in photobiology (invited review). Photodegradation of keratin and other structural proteins. Journal of Photochemistry and Photobiology B: Biology 27(3):187–98.Google Scholar
Smith, GJ, Markham, KR, Melhuish, WH. 1994. The presence of photoreactive β-carboline fluorophores in weathered wool keratin. Photochemistry and Photobiology 60(3):196–8.Google Scholar
Stevenson, FJ. 1982. Genesis, composition, reactions. In: Stevenson, FJ, editor. Humus Chemistry. New York: Wiley-Interscience. p 1443.Google Scholar
Tímár-Balázsy, A, Eastop, D. 1998. Fibres. In: Tímár-Balázsy, A, Eastop, D, editors. Chemical Principles of Textile Conservation. Oxford: Butterworth-Heineman. p 1431.Google Scholar
Tripp, JA, McCullagh, JSO, Hedges, REM. 2006. Preparative separation of underivatized amino acids for compound-specific stable isotope analyses and radiocarbon dating of hydrolyzed bone collagen. Journal of Separation Science 29:41–8.Google Scholar
Van Klinken, GJ, Cook, WG. 1990. Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2):155–64.Google Scholar
Van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2):263–70.Google Scholar
Van Strydonck, M, Van der Borg, K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut voor Kunstpatrimonium 23:228–34.Google Scholar
Van Strydonck, M, De Moor, A, Bénazeth, D. 2004. 14C dating compared to art historical dating of Roman and Coptic textiles from Egypt. Radiocarbon 46(1):231–44.Google Scholar
Van Strydonck, M, Boudin, M, Ervynck, A. 2005. Humans and Myotragus: the issue of sample integrity in radiocarbon dating. In: Alcover, JA, Bover, P, editors. Proceedings of the International Symposium “Insular Vertebrate Evolution: The Palaeontological Approach.” Palma. Monografies de la Societat d'Història Natural de les Balears 12:369–76.Google Scholar
Wightman, EM, editor. 1985. Gallia Belgica. Berkeley: University of California Press. p 304–5.Google Scholar