Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T19:11:22.505Z Has data issue: false hasContentIssue false

Molecular, Radioactive and Stable Carbon Isotope Characterization of Estuarine Particulate Organic Matter

Published online by Cambridge University Press:  18 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Organic matter in sediments and suspended matter is a complex mixture of constituents with different histories, sources and stabilities. To study these components in a suspended matter sample from the Ems-Dollard Estuary, we used combined molecular analysis with pyrolysis/gas chromatography/mass spectrometry and stable and radioactive carbon isotope analyses of the bulk and separated chemical fractions. Carbohydrates and proteins, ca. 50% of the total organic carbon (TOC), are much younger than the bulk sample and have a somewhat higher δ13C value. Lipids and the final residue are considerably older and have lower δ13C values. The final residue, ca. 17% of the total carbon, consists mainly of aliphatic macromolecules that could be derived from algae or terrestrial plants. The δ13C value points to a marine origin.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Aerts-Bijma, A. Th., Meijer, H. A. J. and van der Plicht, J. 1997 AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B123 221225.Google Scholar
Deines, P. 1980 The isotopic composition of reduced organic carbon. In Fritz, P. and Fontes, J.-Ch., eds., Handbook of Environmental Isotope Geochemistry. Volume 1. The Terrestrial Environment. Part A. Amsterdam, Elsevier: 329406.Google Scholar
de Leeuw, J. W., van Bergen, P. F., van Aarssen, B. G. K., Gatellier, J. P. L. A., Sinninghe Damsté, J. S. and Collinson, M. E. 1991 Resistant biomacromolecules as major contributors to kerogen. Philosophical Transactions, Royal Society of London B333: 329337.Google Scholar
Fontugne, M. R. and Duplessy, J. C. 1981 Organic carbon isotope fractionation by marine plankton in the temperature range -1 to 31°C. Oceanologica Acta 4: 8590.Google Scholar
Gottdang, A., Mous, D. J. W. and van der Plicht, J. 1995 The HVEE 14C system at Groningen. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 649656.Google Scholar
van Heemst, J. D. H., Megens, L., de Leeuw, J. W. and Hatcher, P. G. (ms.) Characterisation of estuarine macromolecular dissolved organic matter. Submitted to Limnology and Oceanography. Google Scholar
Klok, J., van der Knaap, J. M. M., de Leeuw, J. W., Cox, H. C. and Schenck, P. A. 1981a Qualitative and quantitative characterization of the total organic matter in a recent marine sediment. In Bjoroy, M. et al., eds., Advances in Organic Geochemistry 1981. Oxford, Pergamon: 813818.Google Scholar
Klok, J., Nieberg-van Velzen, E. H., de Leeuw, J. W. and Schenck, P. A. 1981b Capillary gas chromatographic separation of monosaccharides as their alditol acetates. Journal of Chromatography 207: 273275.Google Scholar
Klok, J., Baas, M., Cox, H. C., de Leeuw, J. W., Rijpstra, W. I. C. and Schenck, P. A. 1984 Qualitative and quantitative characterization of the total organic matter in a recent marine sediment. Organic Geochemistry 6: 265278.Google Scholar
Laane, R., Turkstra, E. and Mook, W. 1990 Stable carbon isotope composition of pelagic and benthic organic matter in the North Sea and adjacent estuaries. In Ittekot, V., Kempe, S. Michaelis, W., and Spitzy, A., eds., Facets of Modern Biogeochemistry. Berlin-Heidelberg, Springer Verlag: 214224.Google Scholar
Macko, S. A., Engel, M. H. and Qiang, Y. 1994 Early diagenesis and organic matter preservation – a molecular stable carbon isotope perspective. Chemical Geology 114: 365379.Google Scholar
Mook, W. G. and Tan, F. C. 1991 Stable carbon isotopes in rivers and estuaries. In Degens, E. T., Kempe, S. and Richie, J. E., eds., Biogeochemistry of Major World Rivers. SCOPE Report 42. New York, John Wiley & Sons: 245264.Google Scholar
Sackett, W. M., Eckelman, W. R., Bender, M. L. and Be, A. W. H. 1965 Temperature dependence of carbon isotope composition in marine plankton and sediments. Science 148: 235237.CrossRefGoogle ScholarPubMed
Schouten, S., Klein Breteler, W., Blokker, P., Schogt, N., Rijpstra, W. I. C., Grice, K., Baas, M. and Sinnighe Damsté, J. S. (ms.) Biosynthetic effects on the stable isotope composition of algal lipids: Implications for deciphering the carbon-isotopic biomarker record. Submitted to Geochimica et Cosmochimica Acta. Google Scholar
Wang, X. C., Druffel, E. R. M. and Lee, C. 1996 Radiocarbon in organic compound classes in particulate organic matter and sediment in the deep northeast Pacific Ocean. Geophysical Research Letters 23: 35833586.Google Scholar