Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T01:02:49.108Z Has data issue: false hasContentIssue false

Modern Radiocarbon Levels for Northwestern Mexico Derived from Tree Rings: A Comparison with Northern Hemisphere Zones 2 and 3 Curves

Published online by Cambridge University Press:  18 July 2016

Laura E Beramendi-Orosco*
Affiliation:
Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF 04510, Mexico
Galia Gonzalez-Hernandez
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF 04510, Mexico
Jose Villanueva-Diaz
Affiliation:
Instituto Nacional de Investigaciones Forestales y Agropecuarias, CENID-RASPA, Gomez Palacio, Durango 35140, Mexico
Francisco J Santos-Arevalo
Affiliation:
Centro Nacional de Aceleradores (CNA), Avda. Thomas Alva Edison 7, Isla de la Cartuja, Seville 41092, Spain
Isabel Gómez-Martinez
Affiliation:
Instituto Nacional de Investigaciones Forestales y Agropecuarias, CENID-RASPA, Gomez Palacio, Durango 35140, Mexico
Edith Cienfuegos-Alvarado
Affiliation:
Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF 04510, Mexico
Pedro Morales-Puente
Affiliation:
Instituto de Geologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF 04510, Mexico
Jamie Urrutia-Fucugauchi
Affiliation:
Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico DF 04510, Mexico
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The radiocarbon variation for northwestern Mexico during the period 1950–2004 was studied by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) analyses of tree rings. Two tree-ring sequences of Pseudotsuga menziesii, sampled in a site isolated from urban centers and active volcanoes (26.18°N, 106.3°W, 3000 m asl), were dendrochronologically dated and separated in annual rings prior to 14C analysis. Results obtained show a similar profile to the values reported for the Northern Hemisphere (NH), having significant correlation coefficients with the compilation curves for NH zone 2 (r = 0.987, p < 0.001) and NH zone 3 (r = 0.993, p < 0.001). The maximum peak is centered at 1964.5 with a δ14C value of 713.15 ± 9.3‰. The values obtained for the period 1958–1965 are lower than zone 2 values and higher than zone 3 values. For the period 1975–2004, the values obtained are higher than the NH compilation curve and other NH records. We attribute the first divergence to the North American monsoon that may have carried 14C-depleted air from the south during the summer months; the second divergence may be attributable to 14C-enriched biospheric CO2.

Type
Calibration, Data Analysis, and Statistical Methods
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Barajas, V, Carrillo, H, Chávez, O, Lacy, R, Lara, A, Méndez, N, Miranda, E. 1986. Regionalización Ecológica del Territorio. Serie: Ordenamiento Territorial No. 4. Mexico City: Secretaría de Desarrollo Urbano y Ecología.Google Scholar
Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Urrutia-Fucugauchi, J, Morton-Bermea, O. 2006. Radiocarbon Laboratory at the National Autonomous University of Mexico: first set of samples and new 14C internal reference material. Radiocarbon 48(3):485–91.Google Scholar
Biondi, F, Fessenden, JE. 1999. Radiocarbon analysis of Pinus lagunae tree rings: implications for tropical dendrochronology. Radiocarbon 41(3):241–9.Google Scholar
Chamizo, E, López-Gutiérrez, JM, Ruiz-Gómez, A, Santos, FJ, García-León, M, Maden, C, Alfimov, V. 2008. Status of the compact 1 MV AMS facility at the Centro Nacional de Aceleradores (Spain). Nuclear Instruments and Methods in Physics Research B 266(10):2217–20.Google Scholar
Cleaveland, MK, Stahle, DW, Therrell, MD, Villanueva-Diaz, J, Burns, BT. 2003. Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change 59(3):369–88.CrossRefGoogle Scholar
Cook, ER. 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47:3759.Google Scholar
Coplen, TB, Brand, WA, Gehre, M, Gröning, M, Meijer, HAJ, Toman, B, Verkouteren, RM. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78(7):2221–439.CrossRefGoogle ScholarPubMed
González-Elizondo, M, Jurado, E, Navár, J, González-Elizondo, MS, Villanueva, J, Aguirre, O, Jiménez, J. 2005. Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: a 1681–2001 rain reconstruction. Forest Ecology and Management 213(1–3):3953.CrossRefGoogle Scholar
Higgins, RW, Chen, Y, Douglas, AV. 1999. Interannual variability of the North American warm season precipitation regime. Journal of Climate 12(3):653–80.Google Scholar
Holmes, RL. 1983. Computer-assisted quality control in tree-ring dating and measuring. Tree-Ring Bulletin 43:6978.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2007. Influence of atmospheric circulation on regional 14CO2 differences. Journal of Geophysical Research 112: D19102, doi:10.1029/2006JD007898.Google Scholar
INEGI (Instituto Nacional de Estadistica, Geogragia e Informatica). 2008. Mexico y Sus Municipios. Mexico City: Instituto Nacional de Estadistica, Geogragia e Informatica. 65 p.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.Google Scholar
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4):1112, doi:10.1029/2002GB001876.Google Scholar
Santos-Arevalo, FJ, Gomez-Martinez, I, Garcia-Leon, M. 2009. Radiocarbon measurement program at the Centro Nacional de Aceleradores (CNA), Spain. Radiocarbon 51(2):883–9.Google Scholar
Stokes, MA, Smiley, TL. 1996. An Introduction to Tree-Ring Dating. Tucson: University of Arizona Press. 73 p.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Tauber, H. 1967. Copenhagen radiocarbon measurements VIII geographic variations in atmospheric C14 activity. Radiocarbon 9:246–56.CrossRefGoogle Scholar
Therrell, MD, Stahle, DW, Cleaveland, MK, Villanueva-Diaz, J. 2002. Warm season tree growth and precipitation over Mexico. Journal of Geophysical Research 107(D14):4205, doi:10.1029/2001JD000851.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33: L01817, doi:10.1029/2005GL024213.Google Scholar
Turnbull, JC, Lehman, SJ, Miller, JB, Sparks, RJ, Southon, JR, Tans, PP. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research-Atmospheres 112: D11310, doi:10.1029/2006JD008184.Google Scholar
Villanueva-Diaz, J, Stahle, DW, Luckman, BH, Cerano-Paredes, J, Therrell, MD, Cleaveland, MK, Cornejo-Oviedo, E. 2007. Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Climatic Change 83(1–2):117–31.Google Scholar
Villanueva-Diaz, J, Cerano, J, Stahle, DW, Estrada, J, Constante, V. 2008. Potencial dendrocronológico de Pseudotsuga menziesii (Mirb.) Franco y reconstrucciones de precipitación y flujo en México. Gomez Palacio, Durango, Mexico, INIFAP CENID RASPA. 49 p.Google Scholar
Villanueva-Diaz, J, Fulé, PZ, Cerano, J, Estrada, J, Sánchez, I. 2009. Reconstrucción de precipitación para el barlovento de la Sierra Madre Occidental con anillos de crecimiento de Pseudotsuga menziesii (Mirb.) Franco. Ciencia Forestal en México 34(105):3769.Google Scholar