Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T06:15:11.121Z Has data issue: false hasContentIssue false

Minimal Extension Phases of Unteraarglacier (Swiss Alps) During the Holocene Based on 14C Analysis of Wood

Published online by Cambridge University Press:  18 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tree trunks and wood fragments in minerotrophic fen peat that accumulated as the result of a jökulhlaup in the outwash plain of Unteraarglacier were radiocarbon-dated using conventional ß-counting. Different pretreatment methods were tested on two wood samples to determine the reliability of our dates. We dated the wood compounds after extended acid-alkali-acid treatment, as well as extraction of cellulose and lignin. The results of the samples Picea (B-6687) and Pinus cent-bra (B-6699) show insignificant differences of < 1σ.

The 14C dates represent retreat of Unteraarglacier due to warmer and/or drier phases in the Holocene compared to modern climate conditions. The glacier was at least several hundred meters smaller in extent than today ca. 8100–7670 bp, 6175–5780 bp, 4580–4300 bp, 4100–3600 bp and 3380–3200 bp. The 14C dates suggest a ca. 2000-yr cyclicity of tree growth in the area covered by the present Unteraarglacier. The most intense warm and dry period occurred between 4100 bp (probably extending back to 4580 bp) and 3600 bp, with growth of fen peat between 3800 and 3600 bp attributed to wetter conditions.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Abrecht, J. 1994 Geologic units of the Aar massif and their pre-Alpine rock associations: A critical review. Schweizerische Mineralogische und Petrographische Mitteilungen 74: 527.Google Scholar
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C. and Clark, P. U. 1997 Holocene climate instability: A widespread event 8200 yr ago. Geology 25: 483486.2.3.CO;2>CrossRefGoogle Scholar
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. and Raynaud, D. 1995 Variations in atmospheric methane concentration during the Holocene epoch. Nature 374: 4649.CrossRefGoogle Scholar
Bonani, G., Ivy, S. D., Hajdas, I., Niklaus, T. R. and Suter, M. 1994 AMS 14C age determinations of tissue, bone and grass samples from the Ötztal ice man. Radiocarbon 36(2): 247250.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., DeMenocal, P., Priore, P., Cullen, H., Hajdas, I. and Bonani, G. 1997 A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278: 12571266.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995 Radiocarbon calibration and analysis of stratigraphy: The OxCal program. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 425430.CrossRefGoogle Scholar
Caulfield, S., O'Donnell, R. G. and Mitchell, P. I. 1998 14C dating of a neolithic field system at Céide fields, County Mayo, Ireland. In Mook, W. G. and van der Plicht, J., eds., Proceedings of the 16th International 14C Conference. Radiocarbon , this issue.CrossRefGoogle Scholar
Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J.-M., Schwander, J., Raynaud, D. and Stauffer, B. 1997 Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysical Research , in press.CrossRefGoogle Scholar
DeNiro, M. J. 1981 The effects of different methods of preparing cellulose nitrate on the determination of the D/H ratios of non-exchangeable hydrogen of cellulose. Earth and Planetary Science Letters 54: 177185.CrossRefGoogle Scholar
Denton, G. H. and Karlén, W. 1973 Holocene climatic variations – their pattern and possible cause. Quaternary Research 3: 155205.CrossRefGoogle Scholar
Dergachev, V. and Chistyakov, V. 1995 Cosmogenic radiocarbon and cyclical natural processes. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 417424.CrossRefGoogle Scholar
Gamper, M. and Suter, J. 1982 Postglaziale Klimage-schichte der Schweizer Alpen. Geographica Helvetica 37(2): 105114.CrossRefGoogle Scholar
Gear, A. J. and Huntley, B. 1991 Rapid changes in the range limits of Scots pine 4000 years ago. Science 251: 554–547.CrossRefGoogle ScholarPubMed
Gudmundsson, G. H. 1994 Converging glacier flow – a case study: The Unteraarglacier. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich 131: 120 p.Google Scholar
Guttannen, Switzerland 1872 [topographic map] Siegfriedatlas sheet XIII. Henri L'Hardy. Original survey, scale 1:50,000.Google Scholar
Killops, S. D. and Killops, V. J. 1993 An Introduction to Organic Geochemistry. New York, Wiley: 265 p.Google Scholar
Mook, W. G. and Streurman, H. J. 1981 Physical and chemical aspects of radiocarbon dating. In Mook, W. G. and Waterbolk, H. T., eds., 14 C and Archaeology. PACT 8. Strasbourg, Conseil de l'Europe: 3155.Google Scholar
Olsson, I. U. 1980 14C in extractives from wood. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 515524.CrossRefGoogle Scholar
Patzelt, G. (with contributions by Bortenschlager, S. and Poscher, G.). 1996 Tirol: Ötztal–Inntal. DEUQUA-Exkursion A1. Innsbruck, Institut für Hochgebirgsfor-schung: 23 p.Google Scholar
Patzelt, G. and Bortenschlager, S. 1973 Die postglazialen Gletscher- und Klimaschwankungen in der Venedigergruppe (Hohe Tauern, Ostalpen). Zeitschrift für Geomorphologie Neue Folge , Supplement 16: 2572.Google Scholar
Patzelt, G. and Bortenschlager, S. 1976 Die postglazialen Gletscher- und Klimaschwankungen in der Venedigergruppe (Hohe Tauern, Ostalpen). Zeitschrift für Gletscherkunde und Glazialgeologie 9(1–2).Google Scholar
Polach, H. A. and Stipp, J. J. 1967 Improved synthesis techniques for methane and benzene radiocarbon dating. International Journal of Applied Radiation and Isotopes 18: 359364.CrossRefGoogle Scholar
Porter, S. C. and Orombelli, G. 1985 Glacier contraction during the middle Holocene in the western Italian Alps: Evidence and implications. Geology 13: 296298.2.0.CO;2>CrossRefGoogle Scholar
Renner, F.-B. (ms.) 1982 Beiträge zur Gletschergeschichte des Gotthardgebietes und dendroklimatologische Analysen an fossilen Hölzern. Inaugural-Dissertation, University of Zurich: 180 p.Google Scholar
Römpp, H. 1992 1992 Römpp Chemie Lexikon. 9 vol. Ed. Falbe, J. and Regitz, M. Stuttgart, Georg Thieme Verlag: 4835 p.Google Scholar
Röthlisberger, F. 1976 Gletscher- und Klimaschwankungen im Raum Zermatt, Ferpècle und Arolla. In Schneebeli, W. and Röthlisberger, F., eds., 8000 Jahre Walliser Gletschergeschichte. Bern, Schweizer Alpen Club: 59150.Google Scholar
Röthlisberger, F., Haas, P., Holzhauser, H., Keller, W., Bircher, W. and Renner, F. 1980 Holocene climatic fluctuations – Radiocarbon dating of fossil soils (fAh) and woods from moraines and glaciers in the Alps. Geographica Helvetica 35(5): 2152.Google Scholar
Schlüchter, C. 1994 Die grünen Alpen vor 2000 Jahren. Cratschla (Zernez) 1995: 60.Google Scholar
Schweingruber, F. H. 1990 Anatomie Europäischer Hölzer: Ein Atlas zur Bestimmung Europäischer Baum-, Strauch- und Zwergstrauchhölzer. Bern, Paul Haupt: 800 p.Google Scholar
Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, ad 1950–6000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 3565.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T. F. and Grootes, P. M. 1995 The GISP2 δ18O Climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44: 341354.CrossRefGoogle Scholar
Stuiver, M., Long, A. and Kra, R. S., eds. 1993 Calibration 1993. Radiocarbon 35(1): 1244.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Tinner, W., Ammann, B. and Germann, P. 1996 Treeline fluctuations recorded for 12,500 years by soil profiles, pollen and plant macrofossils in the Central Swiss Alps. Arctic and Alpine Research 28(2): 131147.CrossRefGoogle Scholar
Unteraarglacier tongue, Switzerland 1879/80 [topographic map] Siegfriedatlas sheet XVIII Nr. 414. Fridolin Becker. Original survey, scale 1:50,000.Google Scholar
Wigley, T. M. L. and Kelly, P. M. 1990 Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society, London A330: 547560.Google Scholar
Zaitseva, G. I. 1995 Chemical composition and sample preparation of archaeological wood for radiocarbon dating. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 311317.CrossRefGoogle Scholar
Zumbühl, H. J. and Holzhauser, H. 1988 Alpengletscher in der Kleinen Eiszeit. Sonderheft “Die Alpen” 3. Bern, Schweizer Alpen Club: 322 p.Google Scholar