Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T20:12:42.677Z Has data issue: false hasContentIssue false

Methods of Radiocarbon Determination in Wine and Bone Samples by Gas Proportional Counting Technique

Published online by Cambridge University Press:  10 April 2018

Jakub Kaizer*
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
Ján Obuch
Affiliation:
Botanical Garden, Comenius University, 03815 Blatnica, Slovakia
Ivan Kontuľ
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
Alexander Šivo
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
Marta Richtáriková
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
Peter Čech
Affiliation:
Laboratory of Isotope Geology, State Geological Institute of Dionýz Štúr, 81704 Bratislava, Slovakia
Pavel P Povinec
Affiliation:
Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
*
*Corresponding author. Email: [email protected].

Abstract

Although radiocarbon accelerator mass spectrometry (14C AMS) surpasses conventional radiometric methods in many aspects, they still represent an interesting alternative, especially for studies unconstrained by sample size. Here we showed that the gas proportional counting technique can be used for bone samples, processed only by a simple ABA method, and ethanol, distilled from wine samples. The feasibility of the described methods was verified by successful dating of 11 well-preserved vertebrate bones of modern to 21 kyr BP age excavated from different caves in Slovakia from which collagen was also extracted, as well as by determination of 14C concentration in two modern western Slovakia vintages, which matches well the atmospheric Δ14C level for the respective region and grape vegetation period. Various empiric factors affecting the yield of the thoroughly tested procedures used for processing of samples and their optimization parameters are discussed as well.

Type
Marine & Other Methods
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387391.Google Scholar
Asenstorfer, RE, Jones, GP, Laurence, G, Zoppi, U. 2011. Authentification of red wine vintage using bomb-pulse 14C. In: Ebeler SE, Takeoka GR, Winterhalter P, editors. Progress in Authentication of Food and Wine. Washington, DC: American Chemical Society. p 8999.Google Scholar
Attolini, MR, Galli, M, Nanni, T, Povinec, P. 1989. A cyclogram analysis of the Bratislava 14C tree-ring record during the last century. Radiocarbon 31(3):839845.Google Scholar
Baudler, R, Adam, L, Rossmann, A, Versini, G, Engel, K-H. 2006. Influence of the distillation step on the ratios of stable isotopes of ethanol in cherry brandies. Journal of Agricultural and Food Chemistry 54:864869.Google Scholar
Berger, R, Libby, WF. 1966. UCLA radiocarbon dates V. Radiocarbon 8:467497.Google Scholar
Brock, F, Ramsey, CB, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.Google Scholar
Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320322.Google Scholar
Cersoy, S, Zazzo, A, Lebon, M, Rofes, J, Zirah, S. 2017. Collagen extraction and stable isotope analysis of small vertebrate bones: a comparative approach. Radiocarbon 59(3):679694.Google Scholar
Čech, P, Grolmusová, Z, Veis, P, Šivo, A, Povinec, P. 2015. Comparison of 13C/12C isotope ratios from the atmosphere measured using two different analytical techniques. In: Šafránková J, Pavlů J, editors. WDS'15 Proceedings of Contributed Papers. Prague: MATFYZPRESS. p 106109.Google Scholar
Fahrni, SM, Fuller, BT, Southon, JR. 2015. Angel’s share combats cine fraud: 14C dating of wine without opening the bottle. Analytical Chemistry 87(17):86468650.Google Scholar
Fülöp, R-H, Heinze, S, John, S, Rethemeyer, J. 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55(2):491500.Google Scholar
Haynes, CV. 1967. Bone organic matter and radiocarbon dating. In: Radiocarbon Dating and Methods of Low-Level Counting. Vienna: International Atomic Energy Agency. p 163168.Google Scholar
Hedges, REM, Van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279291.Google Scholar
Hüls, MC, Grootes, PM, Nadeau, M-J. 2007. How clean is ultrafiltration cleaning of bone collagen? Radiocarbon 49(2):193200.Google Scholar
Hüls, CM, Grootes, PM, Nadeau, M-J. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613625.Google Scholar
Kaizer, J, Ješkovský, M, Povinec, PP, Šivo, A. 2016. Advancement in the 14C and 129I sample processing and target preparation for accelerator mass spectrometry at CENTA. In: Ioannidou A, Povinec PP, editors. Proceedings of the International Conference on Environmental Radioactivity, ENVIRA 2015. Thessaloniki: University of Thessaloniki. p 15–21.Google Scholar
Kato, K, Tokanai, F, Anshita, M, Sakurai, H, Ohashi, MS. 2014. Automated sample combustion and CO2 collection system with IRMS for 14C AMS in Yamagata University, Japan. Radiocarbon 56(1):327331.Google Scholar
Kutschera, W. 2005. Progress in isotope analysis at ultra-trace level by AMS. International Journal of Mass Spectrometry 242(2–3):145160.Google Scholar
Libby, WF. 1961. Radiocarbon dating. Science 133:621629.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.Google Scholar
Martin, GJ, Thibault, J-N. 1995. Spatial and temporal dependence of the 13C and 14C Isotopes of wine ethanols. Radiocarbon 37(3):943954.Google Scholar
Moravčík, J, Škvarnová, M, Krušinský, Š. 2002. Kostol sv. Štefana Kráľa. Žilina: Edis. 88 p.Google Scholar
Nagasawa, S, Kitagawa, H, Nakanishi, T, Tanabe, S, Hong, W. 2013. An approach toward automatic graphitization of CO2 samples for AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 294:266269.Google Scholar
Povinec, P, Šáro, Š, Chudý, M, Šeliga, M. 1968. The rapid method of carbon-14 counting in atmospheric carbon dioxide. The International Journal of Applied Radiation and Isotopes 19(12):877881.Google Scholar
Povinec, P. 1972. Preparation of methane gas filing for proportional 3H and 14C counters. Radiochemistry and Radioanalytical Letters 9:127135.Google Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H measurements. Nuclear Instruments and Methods 156(3):441446.Google Scholar
Povinec, P. 1992. 14C gas counting: Is there still a future? Radiocarbon 34(3):406413.Google Scholar
Povinec, PP, Chudý, M, Šivo, A, Šimon, J, Holý, K, Richtáriková, M. 2009. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovaki. Journal of Environmental Radioactivity 100(2):125130.Google Scholar
Povinec, PP, Franko, O, Šivo, A, Richtáriková, M, Breier, R, Aggarwal, PK, Araguás-Araguás, L. 2010. Spatial radiocarbon and stable carbon isotope variability of mineral and thermal waters in Slovakia. Radiocarbon 52(3):10561067.Google Scholar
Povinec, PP, Ženišová, Z, Šivo, A, Ogrinc, N, Richtáriková, M, Breier, R. 2013. Radiocarbon and stable isotopes as groundwater tracers in the Danube river basin of SW Slovakia. Radiocarbon 55(2–3):10171028.Google Scholar
Povinec, PP, Šivo, A, Ješkovský, M, Svetlik, I, Richtáriková, M, Kaizer, J. 2015a. Radiocarbon in the atmosphere of the Žlkovce monitoring station of the Bohunice NPP: 25 years of continuous monthly measurements. Radiocarbon 57(3):355362.Google Scholar
Povinec, PP, Masarik, J, Ješkovský, M, Kaizer, J, Šivo, A, Breier, R, Pánik, J, Staníček, J, Richtáriková, M, Zahoran, M, Zeman, J. 2015b. Development of the accelerator mass spectrometry technology at the Comenius University in Bratislava. Nuclear Instruments and Methods in Physics Research B 361:8794.Google Scholar
Reimer, P, Bard, E, Bayliss, A, Beck, J, Blackwell, P, Ramsey, C, Buck, C, Cheng, H, Edwards, R, Friedrich, M, Grootes, P, Guilderson, T, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffmann, D, Hogg, A, Hughen, K, Kaiser, K, Kromer, B, Manning, S, Niu, M, Reimer, R, Richards, D, Scott, E, Southon, J, Staff, R, Turney, C, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
St-Jean, G, Kieser, WE, Crann, CA, Murseli, S. 2016. Semi-automated equipment for CO2 purification and graphitization at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59(3):116.Google Scholar
Szpak, P. 2011. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 38(12):33583372.Google Scholar
Theodórsson, P. 1991. Gas proportional versus liquid scintillation counting, radiometric versus AMS dating. Radiocarbon 33(1):913.Google Scholar
Tuniz, C, Bird, JR, Fink, D, Herzog, GF. 1998. Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. Boca Raton (FL): CRC Press. 400 p.Google Scholar
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.Google Scholar
Vogel, JC, Waterbolk, HT. 1967. Groningen radiocarbon dates VII. Radiocarbon 9:107155.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931994.Google Scholar
Wild, EM, Neugebauer-Maresch, C, Einwögerer, T, Stadler, P, Steier, P, Brock, F. 2008. 14C dating of the Upper Paleolithic site at Krems-Hundssteig in lower Austria. Radiocarbon 50(1):110.Google Scholar
Zoppi, U, Skopec, Z, Skopec, J, Jones, G, Fink, D, Hua, Q, Jacobsen, G, Tuniz, C, Williams, A. 2004. Forensic applications of 14C bomb-pulse dating. Nuclear Instruments and Methods in Physics Research B 223–224:770775.Google Scholar