Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T01:48:54.706Z Has data issue: false hasContentIssue false

A Method for Quantifying Deep-Sea Carbonate Dissolution Using 14C Dating

Published online by Cambridge University Press:  18 July 2016

S.A. Van Kreveld
Affiliation:
Center for Marine Earth Sciences, Free University, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
G. M. Ganssen
Affiliation:
Center for Marine Earth Sciences, Free University, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
J.E. Van Hinte
Affiliation:
Center for Marine Earth Sciences, Free University, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
M. M. Melkert
Affiliation:
Center for Marine Earth Sciences, Free University, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
S. R. Troelstra
Affiliation:
Center for Marine Earth Sciences, Free University, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
K. Van Der Borg
Affiliation:
Robert J. van de Graaff Laboratorium, State University Utrecht, Box 80.000, NL-3508 TA Utrecht, The Netherlands
A. De Jong
Affiliation:
Robert J. van de Graaff Laboratorium, State University Utrecht, Box 80.000, NL-3508 TA Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We quantified the rate of carbonate dissolution with increasing water depth by taking the difference in the carbonate mass accumulation rate of deep (3393–4375 m) core top sediments from the shallowest one (3208 m), which we assumed was unaffected by dissolution. This method depends on high quality 14C dates that we calibrated to calendar years for calculating sedimentation rates. Our results show low (ranging from 0 to 0.3 g cm−2 ka−1) and high (ranging from 1.5 to 1.7 g cm−2 ka−1) carbonate dissolution rates, above and below 4000 m, respectively. Therefore, we interpret the sudden increase in the carbonate dissolution rate at 4000-m water depth to mark the lysocline.

Type
IV. 14C as a Tracer of the Dynamic Carbon Cycle in the Current Environment
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Adelseck, C. G. Jr. 1978 Dissolution of deep-sea carbonate: Preliminary calibration of preservational and morphologic aspects. Deep-Sea Research 25:11671185.Google Scholar
Arrhenius, G. 1952 Sediment cores from the East Pacific. Reports of the Swedish Deep-Sea Expedition, 1947–1948 : 1227.Google Scholar
Balsam, W. L. 1983 Carbonate dissolution on the Muir Seamount (Western North Atlantic): Interglacial/glacial changes. Journal of Sedimentary Petrolology 53 (3): 719731.Google Scholar
Berger, W. H. 1970 Planktonic foraminifera: Selective solution and the lysocline. Marine Geology 8: 111138.Google Scholar
Berger, W. H. 1973a Deep-sea carbonates: Evidence for a coccolith lysocline. Deep-Sea Research 20: 917921.Google Scholar
Berger, W. H. 1973b Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Research 3(4): 187195.Google Scholar
Berger, W. H. 1976 Biogenous deep-sea sediments: Production and preservation. In Riley, J. P. and Chester, R., eds., Chemical Oceanography. London, Academic Press: 429455.Google Scholar
Berger, W. H. 1977 Carbon dioxide excursions and the deep-sea record: Aspects of the problem. In Andersen, N. R. and Malahoff, A., eds., The Fate of Fossil Fuel CO 2 in the Oceans. New York, Plenum Press: 505542.Google Scholar
Berger, W. H. and von Rad, U. 1972 Cretaceous and Cenozoic sediments from the Atlantic Ocean. Deep-Sea Drilling Project Initial Reports 14: 787954.Google Scholar
Biscaye, P. E., Kolla, V. and Turekian, K. K. 1976 Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. Journal of Geophysical Research 81: 25952603.Google Scholar
Boltovskoy, E. and Totah, V. I. 1992 Preservation index and preservation potential of some foraminiferal species. Journal of Foraminiferal Research 22(3): 267273.CrossRefGoogle Scholar
Broecker, W. S. and Takahashi, T. 1978 The relationship between lysocline depth and in situ carbonate ion concentration. Deep-Sea Research 25: 6595.Google Scholar
Bruin, P. 1937 Enige ervaringen bij de bepaling van het gehalte van grond aan koolzure kalk volgens de methode Scheibler. Chemisch Weekblad 34: 755759.Google Scholar
Corliss, B. H. and Honjo, S. 1981 Dissolution of deep-sea benthonic foraminifera. Micropaleontology 27: 356378.CrossRefGoogle Scholar
Crowley, T. J. 1983 Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years. Marine Geology 51: 114.Google Scholar
de Vernal, A., Bilodeau, G., Hillaire-Marcel, C. and Kassou, N. 1992 Quantitative assessment of carbonate dissolution in marine sediments from foraminifer linings vs. shell ratios: Davis Strait, northwest North Atlantic. Geology 20: 527530.Google Scholar
Farrell, J. W. and Prell, W. L. 1989 Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific ocean. Paleoceanography 4(4): 447466.CrossRefGoogle Scholar
Francois, R., Bacon, M. P. and Suman, D. O. 1990 Thorium 230 profiling in deep-sea sediments: High resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography 5(5): 761787.Google Scholar
Heath, G. R., Moore, T. C. Jr. and Dauphin, J. P. 1976 Late Quaternary accumulation rates of opal, quartz, organic carbon, and calcium carbonate in the Cascadia Basin area, Northeast Pacific. In Cline, R. and Hays, J., eds., Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Geological Society of America Memoir 145: 393409.Google Scholar
Kipp, N. G. 1976 New transfer-function for estimating past sea-surface conditions from sea-bed distributions of planktonic foraminiferal assemblages in the North Atlantic. In Cline, R. and Hays, J., eds., Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Geological Society of America Memoir 145: 341.Google Scholar
Kuehl, S. A., Fuglseth, T. J. and Thunell, R. C. 1993 Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments. Marine Geology 11: 1535.Google Scholar
Malmgren, B. 1983 Ranking of dissolution susceptibility of planktonic foraminifera at high latitudes of the South Atlantic Ocean. Marine Micropaleontology 8: 183191.Google Scholar
McIntyre, A. and McIntyre, R. 1971 Coccolith concentrations and differential solution in oceanic sediments. In Funnel, B. M. and Riedel, W. R., eds., The Micropaleontology of the Oceans. London, Cambridge University Press: 253261.Google Scholar
Morse, J. W. (ms.) 1973 The dissolution kinetics of calcite: A kinetic origin for the lysocline. Ph.D. dissertation, Yale University.Google Scholar
Morse, J. W. and Mackenzie, F. T. 1990 Geochemistry of sedimentary carbonates. Amsterdam, Elsevier: 707 p.Google Scholar
Naidu, P. D., Malmgren, B. A. and Bornmalm, L. 1993 Quaternary history of calcium carbonate fluctuations in the western equatorial Indian Ocean (Somali Basin). Palaeogeography, Palaeoclimatology, Palaeoecology 103: 2130.CrossRefGoogle Scholar
Parker, W. K. and Berger, W. H. 1971 Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep-Sea Research 18: 73107.Google Scholar
Peterson, L. C. and Prell, W. L. 1985 Carbonate dissolution in Recent sediments of the Eastern Equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Marine Geology 64: 259290.Google Scholar
Pisias, N. G. 1976 Late Quaternary sediment of the Panama Basin: sedimentation rates, periodicities, and controls of carbonate and opal accumulation. In Cline, R. and Hays, J., eds., Investigation of Late Quaternary paleoceanography and paleoclimatology. Geological Society of America Memoir 145: 375391.Google Scholar
Roth, P. H. and Berger, W. H. 1975 Distribution and dissolution of coccoliths in the south and central Pacific. In Sliter, W. V., , A. W. H. and Berger, W. H., eds., Dissolution of Deep-Sea Carbonates. Cushman Foundation for Foraminiferal Research Special Publication 13: 87113.Google Scholar
Ruddiman, W. F. and Heezen, B. C. 1967 Differential solution of planktic foraminifera. Deep-Sea Research 14: 801808.Google Scholar
Schneidermann, N. 1977 Selective dissolution of Recent coccoliths in the Atlantic Ocean. In Ramsay, A. T. S., ed., Oceanic Micropaleontology. New York, Academic Press: 10091053.Google Scholar
Stuiver, M. and Braziunas, T. 1993 Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 137189.Google Scholar
Stuiver, M. and Reimer, P. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.Google Scholar
Tappa, E. and Thunell, R. 1984 Late Pleistocene glacial/interglacial changes in planktonic foraminiferal biofacies and carbonate dissolution patterns in the Vema Channel. Marine Geology 58: 101122.Google Scholar
Thiede, J., Suess, E. and Müller, P. 1982 Late Quaternary fluxes of major sediment components to the sea floor at the Northwest African continental slope. In von Rad, U. et al., eds., Geology of the Northwest African Continental Margin. Berlin, Springer-Verlag: 605631.Google Scholar
Thunell, R. C. 1976 Optimum indices of calcium carbonate dissolution in deep-sea sediments. Geology 4: 525528.Google Scholar