Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T02:51:35.976Z Has data issue: false hasContentIssue false

Marine Reservoir Ages in Northern Senegal and Mauritania Coastal Waters

Published online by Cambridge University Press:  18 July 2016

Maurice Ndeye*
Affiliation:
Laboratoire Carbone 14, IFAN, Université Cheikh Anta Diop de Dakar, Senegal. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to estimate the modern reservoir age of the seawater (R) and the corresponding local offset from the global marine radiocarbon calibration curve (δR) for coastal sites of Senegal and Mauritania, we analyzed pre-bomb mollusk shells collected between AD 1837 and 1945. In total, 27 shell samples were measured, including 19 from Senegal and 8 from Mauritania. The results for Senegal for the weighted mean of R is 511 ± 50 BP and δR is 176 ± 15 BP; for Mauritania, R is 421 ± 15 BP and δR is 71 ± 13 BP. While these values indicate a significant difference from the global mean value of R for Senegal, the R value for coastal Mauritania is close to the average ocean value R of ~400 yr (Stuiver and Braziunas 1993).

Type
Articles
Copyright
Copyright © 2008 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bevington, P. 1969. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill. 320 p.Google Scholar
Bevington, P, Robinson, DK. 1992. Data Reduction and Error Analysis for the Physical Sciences. 2nd edition. New York: McGraw-Hill. 328 p.Google Scholar
Dobrovine, B, Mahfoud, M, Ould Dedah, S. 1991. Atlas hydrologique des eaux superficielles du Banc d'Arguin. Nouadhibou: Bulletin du centre national de recherches océanographiques et de pêches. Volume 24. In French.Google Scholar
Goodfriend, GA, Flessa, KW. 1997. Radiocarbon reservoir ages in the Gulf of California: roles of upwelling and flow from the Colorado River. Radiocarbon 39(2):139–48.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 kyr BP. Radiocarbon 46(3):1059–86.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.CrossRefGoogle Scholar
Ould Dedah, S. 1993. Wind, surface water temperature, surface salinity and pollution in the area of the Banc d'Arguin, Mauritania. Hydrobiologia 258(1–3):919.CrossRefGoogle Scholar
Rebert, JP. 1977. Annexe 9: Aperçu de l'hydrologie du plateau continental de la Mauritanie à la Guinée [WWW document]. http://www.fao.org/DOCREP/003/N0952E/n0952e0n.htm. Accessed 21 March 2005. In French.Google Scholar
Rebert, JP. 1982. Hydrologie et dynamique des eaux du plateau continental Sénégalais. Document Scientifique. Centre de Recherches Oceanographiques de Dakar-Thiaroye (Senegal), no. 89. p 2642. In French.Google Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.Google Scholar
Reimer, PJ, Reimer, RW. 2006. Marine reservoir corrections and the calibration curve. PAGES [Past Global Changes] News 14(3):910.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Métivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271–80.CrossRefGoogle Scholar
Southon, J, Kashgarian, M, Fontugne, M, Métivier, B, Yim, WW-S. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1): 167–80.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Yoneda, M, Kitagawa, H, van der Plicht, J, Uchida, M, Tanaka, A, Uehiro, T, Shibata, Y, Morita, M, Ohno, T. 2000. Pre-bomb marine reservoir ages in the western North Pacific: preliminary result on the Kyoto University collection. Nuclear Instruments and Methods in Physics Research B 172(1–4):377–81.Google Scholar