Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T02:49:54.092Z Has data issue: false hasContentIssue false

Marine Radiocarbon Reservoir Corrections for the Mediterranean and Aegean Seas

Published online by Cambridge University Press:  18 July 2016

P J Reimer
Affiliation:
School of Archaeology and Palaeoecology, Queen's University of Belfast, Northern Ireland
F G McCormac
Affiliation:
School of Archaeology and Palaeoecology, Queen's University of Belfast, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon measurements of nine known age shells from the Mediterranean and the Aegean Seas combined with previous measurements provide an updated value for δR, the local variation in the reservoir correction for marine samples. Comparison of pre-1950s samples from the Algerian coast, with one collected in 1954, indicates early incorporation of nuclear weapons testing 14C into the shallow surface waters of the Mediterranean. Comparisons between different basins indicate the surface waters of the Mediterranean are relatively homogenous. The recommended δR for calibration of the Mediterranean marine samples with the 1998 marine calibration dataset is 58 ± 85 14C yr, but variations in the reservoir age beyond 6000 cal BP should be considered.

Type
Articles
Copyright
Copyright © 2002 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Broecker, WS, Gerard, R. 1969. Natural radiocarbon in the Mediterranean Sea. Limnology and Oceanography 14:883–8.CrossRefGoogle Scholar
Broecker, WS, Olson, EA. 1959. Lamont radiocarbon measurements VI. American Journal of Science Radiocarbon Supplement 1:111–32.Google Scholar
Broecker, WS, Olson, EA. 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3:176204.Google Scholar
Cember, R. 1989. Bomb radiocarbon in the Red Sea—a medium-scale gas-exchange experiment. Journal of Geophysical Research-Oceans 94:2111–23.Google Scholar
Delibrias, G. 1989. Carbon-14. In: Roth, E, Poty, B, editors. Nuclear methods of dating. Dordrecht: Kluwer Academic Publishers. p 399436.Google Scholar
Hogg, AG, Higham, TFG, Dahm, J. 1998. C-14 dating of modern marine and estuarine shellfish. Radiocarbon 40(2):975–84.Google Scholar
Kallel, N, Paterne, M, Duplessy, JC, Vergnaud-Grazzini, C, Pujol, C, Labeyrie, L, Arnold, M, Fontugne, M, Pierre, C. 1997. Enhanced rainfall in the Mediterranean region during the last sapropel event. Oceanologica Acta 20: 697712.Google Scholar
Langone, L, Asioli, A, Correggiari, A, Trincardi, F. 1996. Age-depth modelling through the late Quaternary deposits of the central Adriatic basin. In: Guillizzoni, P, Oldfield, F, editors. Palaeoenvironmental analysis of Italian Crater Lake and Adriatic sediments. Mem Ist Ital Idrobiol. p 177–96.Google Scholar
Mangerud, J. 1972. Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway. Boreas 1:143–72.CrossRefGoogle Scholar
Mercone, D, Thomson, J, Croudace, IW, Siani, G, Paterne, M, Troelstra, S. 2000. Duration of S1, the most recent sapropel in the eastern Mediterranean Sea, as indicated by accelerator mass spectrometry radiocarbon and geochemical evidence. Paleoceanography 15:336–47.CrossRefGoogle Scholar
Pelc, V. 1995. Approche méthodologique de la Chronométrie 14C de l'Holocène marin en Mediterranée, À partir des tests calcaires. In: DEA paléonologie dynamique sédimentaire et chronologies. Lyon University.Google Scholar
Reimer, PJ, McCormac, FG, Moore, J, McCormick, F, Murray, EV. 2002. Marine radiocarbon reservoir corrections for the mid- to late Holocene in the eastern subpolar North Atlantic. Holocene 12:129–35.Google Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.CrossRefGoogle Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Metivier, B, Tisnérat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271–80.Google Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnold, M, Haddad, G. 2001. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294:1917–20.CrossRefGoogle ScholarPubMed
Simmons, AH, Wigand, PE. 1994. Assessing the radiocarbon determinations from Akrotiri Aetokremnos, Cyprus. In: Bar-Yosef, O, Kra, RS, editors. Late Quaternary chronology and paleoclimates of the eastern Mediterranean. Tucson: Radiocarbon. p 247–54.Google Scholar
Stuiver, M, Ostlund, HG. 1983. Geosecs Indian-Ocean and Mediterranean Radiocarbon. Radiocarbon 25(1): 129.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP Radiocarbon 28(2B):9801021.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998a. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–51.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20:1931.CrossRefGoogle Scholar
Weidman, CR. 1995. Development and application of the mollusc Arctica islandica as a paleooceanographic tool for the North Atlantic Ocean. PhD thesis. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.Google Scholar