Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T13:59:33.786Z Has data issue: false hasContentIssue false

Least-Squares Fitting A Smooth Curve to Radiocarbon Calibration Data

Published online by Cambridge University Press:  18 July 2016

F. B. Knox
Affiliation:
900 Ohariu Valley Road, R.D., Johnsonville, New Zealand
B. G. McFadgen
Affiliation:
Conservation Sciences Centre, Department of Conservation, P.O. Box 10420, Wellington New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We Fourier transformed and filtered calibration curve data to compensate for the averaging effect of radiocarbon-dating sets of adjacent tree rings. A Wiener Filter was also applied to minimize the effects of the counting errors of the dates on the resulting calibration curve and to produce a least-squares curve through the data. The method is illustrated using a short 14C-dated tree-ring sequence from New Zealand to produce a calibration curve at yearly intervals for New Zealand matai (Prumnopitys taxifolia). The resulting curve has a nominal standard error of 10 ± 3 yr, which is ca. half the average standard error of the original raw data.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

McFadgen, B. G., Knox, F. B. and Cole, T. R. L. 1994 Radiocarbon calibration curve variations and their implications for the interpretation of New Zealand prehistory. Radiocarbon , 36(2): 221236.CrossRefGoogle Scholar
Pearson, G. W. and Stuiver, M. 1993 High-Precision bidecadal calibration of the radiocarbon time scale, ad 1950–500 bc and 2500–6000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 123.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1994 Numerical Recipes in FORTRAN . 2nd ed. corr. Cambridge, Cambridge University Press: 963 p.Google Scholar
Snedecor, G. W. and Cochran, W. G. 1967 Statistical Methods . 6th ed. Ames, Iowa State University Press: 593 p.Google Scholar
Sparks, R. J., Melhuish, W. H., McKee, J. W. A., Ogden, J., Palmer, J. G. and Molloy, B. P. J. 1995 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 155163.CrossRefGoogle Scholar
Stuiver, M. and Becker, B. 1993 High-precision decadal calibration of the radiocarbon time scale, ad 1950–6000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 3565.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T.F. 1993 Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 137189.CrossRefGoogle Scholar
Stuiver, M. and Pearson, G. W. 1993 High-precision bidecadal calibration of the radiocarbon time scale, 500–2500 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 2533.Google Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215229.Google Scholar