Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T14:31:42.443Z Has data issue: false hasContentIssue false

LAC-UFF STATUS REPORT: CURRENT PROTOCOLS AND RECENT DEVELOPMENTS

Published online by Cambridge University Press:  29 January 2021

Fabiana Oliveira*
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Departamento de Físico-Química, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, Rio de Janeiro, Brazil
Kita Macario
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Carla Carvalho
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista s/n, Niterói, 24001-970, RJ, Brazil
Vinicius Moreira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Eduardo Q Alves
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Oxford Radiocarbon Unit (ORAU), Dyson Perrins Building, South Parks Road, OxfordOX1 3QY, United Kingdom
Ingrid Chanca
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Max Planck Institut for Biogeochemistry, Hans-Knoell-Str. 10, Jena, Germany
Maikel Diaz
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Instituto Superior de Tecnologías y Ciencias Aplicadas, InSTEC, Universidad de la Habana, Quinta de los Molinos, Ave. Salvador Allende y Luaces, Plaza de la Revolución, Havana, CP 10400, Cuba
Renata Jou
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Izabela Hammerschlag
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Bruna M Netto
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Maria Isabela Oliveira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Ayrton Assumpção
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil
Dayanne Fernandes
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, 24210-346, RJ, Brazil Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, campus Nova Friburgo, Av. Governador Roberto Silveira 1900, Nova Friburgo, RJ, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

The Radiocarbon Laboratory of the Fluminense Federal University was installed in 2009, and its NEC Single Stage Accelerator Mass Spectrometry system has been operational since 2012. As the first 14C-AMS facility in Latin America, the LAC-UFF became a reference center for radiocarbon (14C) dating in Brazil. Over the years we have implemented pretreatment protocols for several kinds of materials, such as cellulose, soil, bone, and biofuels. In the present paper we describe our current protocols for the preparation of these types of samples. Moreover, after 10 years of operation, with the aim of expanding the range of materials we are able to analyze, we report the results of several tests to improve accuracy, precision and background levels. For example, here we discuss how isotopic fractionation during the graphitization and measurement steps has been controlled. Concerning results interpretation, our research group has been using OxCal chronological models to analyze different contexts such as stromatolite growth, tree rings, soil deposition and marine reservoir effect (MRE) determination.

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Aguilera, O, Belem, AL, Angelica, R, Macario, K, Crapez, M, et al. 2016. Fish bone diagenesis in southeastern Brazilian shell mounds and its importance for paleoenvironmental studies. Quaternary International 391:1825.CrossRefGoogle Scholar
Alkass, K, Saitoh, H, Buchholz, BA, Bernard, S, Holmlund, G, et al. 2013. Analysis of radiocarbon, stable isotopes and DNA in teeth to facilitate identification of unknown decedents. PLoS One 8(7).CrossRefGoogle ScholarPubMed
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, et al. 2013. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the saquarema shellmound. Radiocarbon 57(4):517525.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, et al. 2015a. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(4):517525. doi: 10.2458/azu_rc.57.18404.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, et al. 2015b. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035. doi: 10.1016/j.quageo.2015.05.006.CrossRefGoogle Scholar
Andree, M. 1984. 14C measurements on foraminifera of deep sea core V28-238 and their preliminary interpretation. Nuclear Instruments and Methods in Physics Research Section B 5.Google Scholar
Anjos, RM, Macario, KD, Gomes, PRS, Linares, R, Queiroz, E, Carvalho, C. 2013. Towards a complete 14C AMS facility at the Universidade Federal Fluminense (Niterói, Brazil): sample preparation laboratory tests. Nuclear Instruments and Methods in Physics Research Section B 294:173175.CrossRefGoogle Scholar
ASTM International. 2016. ASTM D6866-16: Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. ASTM Stand. West Conshohocken, PA. ASTM Int. 1–19.Google Scholar
Barros, LF de P, Coe, HHG, Seixas, AP, Magalhães, AP, Macario, KCD. 2016. Paleobiogeoclimatic scenarios of the Late Quaternary inferred from fluvial deposits of the Quadrilátero Ferrífero (southeastern Brazil). J. South Am. Earth Sci. 67:7188.CrossRefGoogle Scholar
Bragança, D, Oliveira, F, Macario, K, Nunes, V, Muniz, M, et al. 2021. Establishing water sample protocols for radiocarbon analysis at LAC-UFF, Brazil. 2021. Radiocarbon. In press.Google Scholar
Brock, F. 2013. Radiocarbon dating of historical parchments. Radiocarbon 55(2):353363.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Burr, GS, Vance Haynes, C, Shen, C-C, Taylor, F, Chang, Y-W, et al. 2015. Temporal variations of radiocarbon reservoir ages in the South Pacific Ocean during the Holocene. Radiocarbon 57(4):507515.CrossRefGoogle Scholar
Carvalho, C, Macario, K, De, Oliveira M, Oliveira, F, Chanca, I, et al. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.CrossRefGoogle Scholar
Castro, MD, Macario, KD, Gomes, PRS. 2015. New software for AMS data analysis developed at IF-UFF Brazil. Nuclear Instruments and Methods in Physics Research Section B 361:526530.CrossRefGoogle Scholar
Coe, HHG, Macario, K, Gomes, JG, Chueng, KF, Oliveira, F, et al. 2014. Understanding Holocene variations in the vegetation of Sao Joao River basin, southeastern coast of Brazil, using phytolith and carbon isotopic analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415:5968.CrossRefGoogle Scholar
Diaz, M, Macario, KD, Gomes, PRS, Álvarez-Lajonchere, L, Aguilera, O, Alves, EQ. 2017. Radiocarbon marine reservoir effect on the northwestern coast of Cuba. Radiocarbon 59(2):333341.CrossRefGoogle Scholar
Douka, K, Hedges, REM, Higham, TFG. 2010. Improved AMS14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52(2):735751.CrossRefGoogle Scholar
Fallon, SJ, Fifield, LK, Chappell, JM. 2010. The next chapter in radiocarbon dating at the Australian National University: Status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research Section B 268(7–8):898901.CrossRefGoogle Scholar
Goh, KM, Molloy, B. 1972. Reliability of radiocarbon dates from buried charcoals. Proc. 8th Int. Conf. Radiocarb. Dating, Lower Hutt, New Zealand G40:565–81.Google Scholar
Hajdas, I, Hendriks, L, Fontana, A, Monegato, G. 2017. Evaluation of preparation methods in radiocarbon dating of old wood. Radiocarbon 59(3):727737.CrossRefGoogle Scholar
Hammerschlag, I, Macario, KD, Barbosa, AC, Pereira G de A, Farrapo CL, Cruz F. 2019. Annually verified growth of cedrela fissilis from central Brazil. Radiocarbon 61(4):927937.CrossRefGoogle Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford accelerator mass spectrometry facility: technical developments in routine dating. Archaeometry 31(2):99113.CrossRefGoogle Scholar
Jou, RM, Macario, KD, Carvalho, C, Dias, RS, Brum, MC, et al. 2015. Biogenic fraction in the synthesis of polyethylene terephthalate. International Journal of Mass Spectrometry 388:6568.CrossRefGoogle Scholar
Jou, RM, Macario, KD, Pessenda, LC, Pereira, MG, Lorente, FL, et al. 2020. The use of carbon isotopes (13C,14C) in different soil types and vegetation coverage in a montane atlantic forest region, Southeast Brazil. Quaternary Geochronology 61:101133.CrossRefGoogle Scholar
Kobayashi-Kinoshita, S, Yamakoshi, Y, Onuma, K, Yamamoto, R, Asada, Y. 2016. TGF-β1 autocrine signalling and enamel matrix components. Sci. Rep. 6.CrossRefGoogle ScholarPubMed
Leavitt, SW, Danzer, SR. 1993. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal. Chem. 65(1):8789.CrossRefGoogle Scholar
Linares, R, MacArio, KD, Santos, GM, Carvalho, C, Dos Santos, HC, et al. 2015. Radiocarbon measurements at LAC-UFF: Recent performance. Nuclear Instruments and Methods in Physics Research Section B 361:341345.CrossRefGoogle Scholar
Lisker, S, Vaks, A, Bar-Matthews, M, Porat, R, Frumkin, A. 2009. Stromatolites in caves of the Dead Sea Fault Escarpment: implications to latest Pleistocene lake levels and tectonic subsidence. Quaternary Science Reviews 28(1–2):8092.CrossRefGoogle Scholar
Lopes, MS, Bertucci, TCP, Rapagnã, L, Tubino, RDA, Monteiro-Neto, C, et al. 2016. The path towards endangered species: Prehistoric fisheries in southeastern Brazil. PLoS One 11(6):CrossRefGoogle ScholarPubMed
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, et al. 2016a. The Usiminas shellmound on the Cabo Frio Island: Marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Moreira, VN, Oliveira, FM, Chanca, IS, et al. 2017a. Fractionation in the graphitization reaction for 14C-AMS analysis: The role of Zn × the role of TiH 2. Int. J. Mass Spectrom. 423:3945.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Oliveira, FM, Moreira, VN, Chanca, IS, et al. 2016b. Graphitization reaction via zinc reduction: How low can you go? Int. J. Mass Spectrom. 410:4751.CrossRefGoogle Scholar
Macario, KD, Buarque, A, Scheel-Ybert, R, Anjos, RM, Gomes, PRS, et al. 2009. The long-term tupiguarani occupation in southeastern Brazil. Radiocarbon 51(3):937946.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, et al. 2015a. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research Section B 361:402405.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Moreira, VN, Alves, EQ, Carvalho, C, et al. 2017b. Optimization of the amount of zinc in the graphitization reaction for radiocarbon AMS Measurements at LAC-UFF. Radiocarbon 59(3):885891.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, et al. 2015b. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. J. Environ. Radioact. 143:1419.CrossRefGoogle ScholarPubMed
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, et al. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489499.CrossRefGoogle Scholar
Macario, KD, Stríkis, NM, Cruz, FW, Hammerschlag, I, Alves, EQ, et al. 2019. Assessing the dead carbon proportion of a modern speleothem from central Brazil. Quaternary Geochronology 52:2936.CrossRefGoogle Scholar
Milheira, RG, Macario, KD, Chanca, IS, Alves, EQ. 2017. Archaeological earthen mound complex in patos lagoon, southern Brazil: chronological model and freshwater influence. Radiocarbon 59(1):195214.CrossRefGoogle Scholar
Moreira, VN, Macario, KD, Guimarães, RB, Dias, FF, Araujo, JC, et al. 2020. Aragonite fraction dating of vermetids in the context of Paleo sea-level curves reconstruction. Radiocarbon 62(2):335348.CrossRefGoogle Scholar
Oliveira, FM, Araujo, CAR, Macario, KD, Cid, AS. 2015. Radiocarbon analysis of the Torah scrolls from the National Museum of Brazil collection. Nuclear Instruments and Methods in Physics Research Section B 361:531534.CrossRefGoogle Scholar
Oliveira, FM, Macario, KD, Pereira, BB, Buarque, A, Chivall, D, et al. 2017. Evaluation of sample preparation protocols for the 14C dating of Tupiguarani pottery in southeastern Brazil. Radiocarbon 59(3):765773.CrossRefGoogle Scholar
Oliveira, FM, Macario, KD, Simonassi, JC, Gomes, PRS, Anjos, RM, et al. 2014. Evidence of strong storm events possibly related to the little Ice Age in sediments on the southerncoast of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415:233–39.CrossRefGoogle Scholar
Oliveira, MI, Carvalho, C, Macario, K, Evangelista, H, Lamounier, S, Hammerschlag, I. 2019. Marine reservoir corrections for the Brazilian northern coast using modern corals. Radiocarbon 61(2):587597.CrossRefGoogle Scholar
Oliveira, F, Macario, K, Silva, K, Pereira, B, Chanca, I, et al. 2020. Preliminary radiocarbon dating results of bone samples at the LAC-UFF, Brazil. Radiocarbon. doi: 10.1017/RDC.2020.125.CrossRefGoogle Scholar
Quarta, G, Calcagnile, L, Giffoni, M, Braione, E, D’Elia, M. 2013. Determination of the biobased content in plastics by radiocarbon. Radiocarbon 55(3–4):18341844.CrossRefGoogle Scholar
Ramsey, CB. 2008. Deposition models for chronological records. Quaternary Science Reviews. CrossRefGoogle Scholar
Ravi Prasad, GV, Cherkinsky, A, Culp, RA, Dvoracek, DK. 2015. Two years since SSAMS: Status of 14C AMS at CAIS. Nuclear Instruments and Methods in Physics Research Section B 361:6971.Google Scholar
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, et al. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2):534544.CrossRefGoogle Scholar
Santos, JFP, Macario, KD, Jou, RM, Oliveira, FM, Cardoso, RP, et al. 2019. Monitoring the biogenic fraction of sugarcane-based plastic bags. J. Clean. Prod. 233:348352.CrossRefGoogle Scholar
Shirayama, Y, Horikoshi, M. 1989. Comparison of the benthic size structure between sublittoral, upper-slope and deep-sea areas of the Western Pacific. Int. Rev. der gesamten Hydrobiol. und Hydrogr. 74(1):113.CrossRefGoogle Scholar
Slota, PJ, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303306.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and aba pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, et al. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B 259(1):320329.CrossRefGoogle Scholar