Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T16:53:42.541Z Has data issue: false hasContentIssue false

Isotopic Signature (δ13C, ∆14C) of DIC in Sediment Pore Waters: An Example from the Rhone River Delta

Published online by Cambridge University Press:  19 November 2018

J-P Dumoulin*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
L Pozzato
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
J Rassman
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
F Toussaint
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
M Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
N Tisnérat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
L Beck
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
I Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
E Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
C Rabouille
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
*
*Corresponding author. Email: [email protected].

Abstract

A better understanding of the dynamics of different particulate organic matter (OM) pools in the coastal carbon budget is a key issue for quantifying the role of the coastal ocean in the global carbon cycle. To elucidate the benthic component of this carbon cycle at the land-sea interface, we investigated the carbon isotope signatures (δ13C and ∆14C) in the sediment pore waters dissolved inorganic carbon (DIC) in addition to the sediment OM to constrain the origin of the OM mineralized in sediments. The study site is located at the outlet of the Rhône River (Mediterranean Sea), which was chosen because this river is one of the most nuclearized rivers in Europe and nuclear 14C can serve as a tracer to follow the fate of the OM discharged by the river to the coastal sea. The ∆14C results found in the pore waters DIC show a general offset between buried and mineralized OM following a preferential mineralization model of young and fresh particles. For example, we found that the sediment OM has values with a mean ∆14C=–33‰ at sampling stations near the river mouth whereas enriched ∆14C values around +523‰ and +667‰ respectively were found for the pore waters DIC. This indicates complete mineralization of a riverine fraction of OM enriched in 14C in the river conduit during in-stream photosynthesis. In shelf sediments, the ∆14C of pore waters DIC is slightly enriched (+57‰) with sediment OM reaching –570‰. A mixing model shows that particles mineralized near the river mouth are certainly of riverine phytoplanktonic origin whereas OM mineralized on the shelf is of marine origin. This work highlights the fact that pore waters provide additional information compared to sediments alone and it seems essential to work on both pools to study the carbon budget in river prodelta.

Type
Water, Sediment, Karst
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Aller, RC, Blair, NE. 2004. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes. Geochimica et Cosmochimica Acta 68:18151825.Google Scholar
Aller, RC, Blair, NE. 2006. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator. Continental Shelf Research 26:22412259.Google Scholar
Aller, RC, Blair, NE, Brunskill, GJ. 2008. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research-Earth Surface 113.Google Scholar
Bauer, JE, Reimers, CE, Druffel, ERM, Willimas, PM. 1995. Isotopic constraints on carbon exchange between deep ocean sediments and sea water. Nature 373:686689.Google Scholar
Bauer, JE, Cai, WJ, Raymond, PA, Bianchi, ST, Hopkinson, CS, Regnier, PAG. 2013. The changing carbon cycle of the coastal ocean. Nature 504:6170.Google Scholar
Berner, RA. 1982. A rate model for organic decomposition during bacterial sulfate reduction in marine sediments [Biogéochimie de la matière organique à l’interface eau-sédiment marin]. Colloques Internationaux du CNRS . Paris. p 3544.Google Scholar
Blair, NE, Aller, RC. 2012. The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Earth Sci. 4:17.1117.23.Google Scholar
Cai, WJ. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Ann Rev Mar Sci 3:123145.Google Scholar
Cathalot, C, Rabouille, C, Pastor, L, Deflandre, B, Viollier, E, Buscail, R, Gremare, A, Treignier, C, Pruski, A. 2010. Temporal variability of carbon recycling in coastal sediments influenced by rivers: assessing the impact of flood inputs in the Rhone River prodelta. Biogeosciences 7:11871205.Google Scholar
Cathalot, C, Rabouille, C, Tisnerat-Laborde, N, Toussaint, F, Kerherve, P, Buscail, R, Loftis, K, Sun, MY, Tronczynski, J, Azoury, S, Lansard, B, Treignier, C, Pastor, L, Tesi, T. 2013. The fate of river organic carbon in coastal areas: A study in the Rhone River delta using multiple isotopic (delta C-13, Delta C-14) and organic tracers. Geochimica et Cosmochimica Acta 118:3355.Google Scholar
Charmasson, S, Bouisset, P, Radakovitch, O, Pruchon, AS, Arnaud, M. 1998. Longcore profiles of Cs-137, Cs-134, Co-60 and Pb-210 in sediment near the Rhone River (Northwestern Mediterranean Sea). Estuaries 21:367378.Google Scholar
Cottereau, E, Arnold, M, Moreau, C, Baque, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, JP, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new C-14 AMS at LMC14 in Saclay, France. Radiocarbon 49:291299.Google Scholar
Coularis, C. 2016. Dynamique et transfert du carbone dans le bassin versant de la Loire : Traçage par les isotopes du carbone [PhD dissertation]. Univ. Paris-Saclay. 252 p.Google Scholar
Coularis, C, Tisnérat-Laborde, N, Pastor, L, Siclet, F, Fontugne, M. 2016. Temporal and spatial variations of freshwater reservoir ages in the Loire River watershed. Radiocarbon 58:549563.Google Scholar
De Madron, XD, Abassi, A, Heussner, S, Monaco, A, Aloisi, JC, Radakovitch, O, Giresse, P, Buscail, R, Kerherve, P. 2000. Particulate matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean). Oceanologica Acta 23:717730.Google Scholar
Dumoulin, JP, Caffy, I, Comby-Zerbino, C, Delque-Kolic, E, Hain, S, Massault, M, Moreau, C, Quiles, A, Setti, V, Souprayen, C, Tannau, J-F, Thellier, B, Vincent, J. 2013. Development of a line for dissolved inorganic carbon extraction at LMC14 Artemis Laboratory in Saclay, France. Radiocarbon 55:10431049.Google Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59:713726.Google Scholar
Estournel, C, Kondrachoff, V, Marsaleix, P, Vehil, R. 1997. The plume of the Rhone: Numerical simulation and remote sensing. Continental Shelf Research 17:899924.Google Scholar
Eyrolle, F, Antonelli, C, Renaud, P, Tournieux, D. 2015. Origins and trend of radionuclides within the lower Rhône River over the last decades. Radioprotection 50:2734.Google Scholar
Fontugne, M, Jouanneau, JM. 1987. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: organic carbon isotopes evidence from the Gironde system. Estuarine Coastal and Shelf Sc 24:377387. doi.org/10.1016/0272-7714(87)90057-6.Google Scholar
Fontugne, M, Sadouni, N, Saliot, A, Siclet, F, Bouloubassi, I. 2002. La distribution des activites en 14C des eaux, du bouchon vaseux et des sediments dans l’estuaire de la Loire. Radioprotection - Colloques 37:18.Google Scholar
Fontugne, M, Jean-Baptiste, P, Fourré, E, Bentaleb, I, Dezileau, L, Charmasson, S, Antonelli, C. Marang, L, Siclet, F. 2012. Carbon 14 inputs from the Rhône River to the Western Mediterranean Sea during fall 2010 and spring 2011. 21st International Radiocarbon Conference, Abst. S16-P-212. Paris 2012.Google Scholar
Goni, MA, Ruttenberg, KC, Eglinton, TI. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389:275278.Google Scholar
Goni, MA, Ruttenberg, KC, Eglinton, TI. 1998. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta 62:30553075.Google Scholar
Goni, MA, Monacci, N, Gisewhite, R, Crockett, J, Nittrouer, C, Ogston, A, Alin, SR, Aalto, R. 2008. Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea). J. Geophys. Res. 113, F01S10, doi:10.1029/2006JF000653.Google Scholar
Harmelin-Vivien, M, Dierking, J, Banaru, D, Fontaine, MF, Arlhac, D. 2010. Seasonal variation in stable C and N isotope ratios of the Rhone River inputs to the Mediterranean Sea (2004–2005). Biogeochemistry 100:139150.Google Scholar
Higueras, M, Kerherve, P, Sanchez-Vidal, A, Calafat, A, Ludwig, W, Verdoit-Jarraya, M, Heussner, S, Canals, M. 2014. Biogeochemical characterization of the riverine particulate organic matter transferred to the NW Mediterranean Sea. Biogeosciences 11:157172.Google Scholar
Hunt, JM. 1970. The significance of carbon isotopes variations in marine sediments. In: Hobson GB, Speers GC, editors. Advances in Organic Chemistry. p 2735.Google Scholar
Jean-Baptiste, P, Fontugne, M, Fourré, E, Marang, L, Antonelli, C, Charmasson, S, Siclet, F. 2018a. Tritium and radiocarbon levels in the Rhône river delta and along the French Mediterranean coastline. Journal of Environmental Radioactivity 187:5364.Google Scholar
Jean-Baptiste, P, Fontugne, M, Fourré, E, Marang, L, Charmasson, S, Siclet, F. 2018b. Tritium and carbon-14 temporal variations in the organic matter of sediments off the Rhône River mouth (NW Mediterranean). Journal of Environmental Radioactivity (submitted).Google Scholar
Lansard, B, Rabouille, C, Denis, L, Grenz, C. 2009. Benthic remineralization at the land-ocean interface: A case study of the Rhone River (NW Mediterranean Sea). Estuarine Coastal and Shelf Science 81:544554.Google Scholar
Maillet, GM, Vella, C, Berne, S, Friend, PL, Amos, CL, Fleury, TJ, Normand, A. 2006. Morphological changes and sedimentary processes induced by the December 2003 flood event at the present mouth of the Grand Rhone River (southern France). Mar. Geol. 234:159177.Google Scholar
Many, G, Bourrin, F, Durrieu de Madron, X, Ody, A, Doxaran, D. In press. Glider and satellite monitoring of the variability of the suspended particle distribution and size in the Rhône ROFI. Progress in Oceanography 163:123135. http://dx.doi.org/10.1016/j.pocean.2017.05.006 Google Scholar
Miralles, J, Radakovitch, O, Aloisi, JC. 2005. Pb-210 sedimentation rates from the Northwestern Mediterranean margin. Mar. Geol. 216:155167.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting C-14 activities and concentrations. Radiocarbon 41:227239.Google Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, et al. 2013. Research and development of the Artemis 14C AMS facility: status report. Radiocarbon 55(2–3).Google Scholar
Ollivier, P, Hamelin, B, Radakovitch, O. 2010. Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta 74:907927.Google Scholar
Olsson, Osadebe. 1974. Carbon isotope variations and fractionation corrections in 14C dating. doi: 10.1111/j.1502-3885.1974.tb00672.x.Google Scholar
Pastor, L, Deflandre, B, Viollier, E, Cathalot, C, Metzger, E, Rabouille, C, Escoubeyrou, K, Lloret, E, Pruski, AM, Vetion, G, Desmalades, M, Buscail, R, Gremare, A. 2011. Influence of the organic matter composition on benthic oxygen demand in the Rhone River prodelta (NW Mediterranean Sea). Continental Shelf Research 31:10081019.Google Scholar
Pont, D, Day, JW, Hensel, P, Franquet, E, Torre, F, Rioual, P, Ibanez, C, Coulet, E. 2002. Response scenarios for the deltaic plain of the Rhone in the face of an acceleration in the rate of sea-level rise with special attention to Salicornia-type environments. Estuaries 25:337358.Google Scholar
Pozzato, L, Rassmann, J, Lansard, B, Dumoulin, J-P, van Brugel, P, Rabouille, C. 2018. Origin of remineralized organic matter in sediments from the Rhone River prodelta (NW Mediterranean) traced by Δ14C and δ13C signatures of pore water DIC. Progress in Oceanography 163(2018):112122.Google Scholar
Rabouille, C. 2013. CARBODELTA cruise, RV Téthys II, http://dx.doi.org/10.17600/13450060.Google Scholar
Radakovitch, O, Charmasson, S, Arnaud, M, Bouisset, P. 1999a. Pb-210 and caesium accumulation in the Rhone delta sediments. Estuarine Coastal and Shelf Science 48:7792.Google Scholar
Radakovitch, O, Cherry, RD, Heussner, S. 1999b. Pb-210 and Po-210: tracers of particle transfer on the Rhone continental margin (NW Mediterranean). Deep-Sea Res. I 46:15391563.Google Scholar
Rassmann, J, Lansard, B, Pozzato, L, Rabouille, C. 2016. Carbonate Chemistry in sediment pore waters of the Rhône River delta driven by early diagenesis (NW Mediterranean). Biogeosciences 13:53795394.Google Scholar
Raymond, PA, Bauer, JE. 2001. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org. Geochem. 32:469485.Google Scholar
Seeberg-Elverfeldt, J, Schlüter, M, Feseker, T, Kölling, M. 2005. Rhizon sampling of pore waters near the sediment-water interface of aquatic systems. Limnol. Oceanogr.-Methods 3: 361371.Google Scholar
Sempere, R, Charriere, B, Van Wambeke, F, Cauwet, G. 2000. Carbon inputs of the Rhone River to the Mediterranean Sea: Biogeochemical implications. Global Biogeochemical Cycles 14:669681.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Métivier, B, Tisnérat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the mediterranean Sea and Black sea. Radiocarbon 42:271280.Google Scholar
Tisnérat-Laborde, N, Montagna, P, Frank, N, Siani, G, Silenzi, S, Paterne, M. (2013) A high-resolution coral-based Δ14C record of surface water processes in the western Mediterranean Sea. Radiocarbon 55(2–3):19171930.Google Scholar
Toussaint, F. 2013. Variabilité temporelle des processus biogéochimique influençant le carbone organique terrigène dans les sédiments du prodelta du Rhone, LSCE. Université de Versailles Saint-Quentin-en-Yveline. p 215.Google Scholar
Toussaint, F, Tisnerat-Laborde, N, Cathalot, C, Buscail, R, Kerherve, P. Rabouille, C. 2013. Depositional processes of organic matter in the Rhone river delta (Gulf of Lions, France) traced by density fractionation coupled with d14C and d13C. Radiocarbon 55:920931.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293 Google Scholar
Zetsche, E, Thornton, B, Midwood, AJ, Witte, U. 2011. Utilisation of different carbon sources in a shallow estuary identified through stable isotope techniques. Continental Shelf Research 31: 832840.Google Scholar
Zuo, Z, Eisma, D, Gieles, R, Beks, J. 1997. Accumulation rates and sediment deposition in the northwestern Mediterranean. Deep-Sea Res. II 44:597609.Google Scholar