Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-20T17:18:11.929Z Has data issue: false hasContentIssue false

Inorganic Radiocarbon in Time-Series Sediment Trap Samples: Implication of Seasonal Variation of 14C in the Upper Ocean

Published online by Cambridge University Press:  18 July 2016

Makio C. Honda*
Affiliation:
Japan Marine Science and Technology Center, Ocean Research Department, 2–15 Natsushima, Yokosuka, Kanagawa 237 Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to verify sediment trap samples as indicators of upper ocean 14C concentrations, particulate inorganic radiocarbon (PICΔ14C) collected by time-series sediment traps in the Sea of Okhotsk and the Bering Sea was measured by accelerator mass spectrometry (AMS). All of the PICΔ14C measurements were < 0‰, in contrast to GEOSECS 14C data in the upper ocean from the northwestern North Pacific. This difference is attributed to the upwelling of deepwater that contains low Δ14C of dissolved inorganic carbon (DICΔ14C) and to the decrease over time of surface DICΔ14C owing to the decrease of atmospheric Δ14C values. In addition, PICΔ14C values showed significant seasonal variability: PICΔ14C collected in the fall was the greatest (-22‰ on average), whereas PICΔ14C collected in winter showed an average minimum of −48‰. It is likely that this difference was caused by changes in mixed layer thickness. Although some uncertainties remain, further study on PICΔ14C will enable us to estimate seasonal variability in DICΔ14C and air-sea CO2 exchange rate.

Type
14C Cycling and the Oceans
Copyright
Copyright © the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Alderman, S. E., Honjo, S. and Curry, W. B. 1996 Seasonal transition of species composition and isotopic variability of planktonic foraminifera in the sea of Okhotsk (Abstract). 1996 AGU Ocean Science Meeting Abstracts 76: OS76.Google Scholar
Anderson, R. F., Rowe, G. T., Kemp, P., Trumbore, S. and Biscaye, P. E. 1994 Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight: A test of the shelf export hypothesis. Deep-Sea Research II 41: 669703.Google Scholar
Beukens, R. P. 1992 Radiocarbon accelerator mass spectrometry: Background, precision, and accuracy. In Taylor, R. E., Long, A. and Kra, R. S., eds. Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 230240.CrossRefGoogle Scholar
Broecker, W.S. and Peng, T.H. 1980 Seasonal variability in the 14C/12C ratio for surface ocean water. Geophysical Research Letters 7: 10201022.CrossRefGoogle Scholar
Broecker, W.S. and Peng, T.H. 1982 Tracers in the Sea. Palisades, New York, Eldigio Press: 690 p.Google Scholar
Broecker, W. S., Peng, T. H., Östlund, G. and Stuiver, M. 1985 The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90: 69536970.CrossRefGoogle Scholar
Curry, W. B. and Crowley, T. J. 1987 Δ13C in equatorial Atlantic surface waters: Implications for the Ice Age pCO2 levels. Paleoceanography 2: 489517.CrossRefGoogle Scholar
Curry, W. B., Thunell, R. C. and Honjo, S. 1983 Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth and Planetary Science Letters 64: 3344.CrossRefGoogle Scholar
Dodimead, A. J. 1967 Winter oceanographic conditions in the central Subarctic Pacific. International North Pacific Commerce Document 999: 14.Google Scholar
Druffel, E. R. M. 1987 Bomb radiocarbon in the Pacific annual and seasonal time scale variations. Journal of Marine Research 45: 667698.CrossRefGoogle Scholar
Druffel, E. R. M. 1989 Variability of ventilation in the North Atlantic determined from high precision measurements of bomb radiocarbon in banded corals. Journal of Geophysical Research 94: 32713285.CrossRefGoogle Scholar
Druffel, E. R. M., Honjo, S., Griffin, S. and Wong, C. S. 1986 Radiocarbon in particulate matter from the Eastern Sub-Arctic Pacific Ocean: Evidence of a source of terrestrial carbon to the deep sea. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 397407.CrossRefGoogle Scholar
Druffel, E. R. M. and Linick, T. W. 1978 Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5: 913916.CrossRefGoogle Scholar
Druffel, E. R. M. and Suess, H. E. 1983 On the radiocarbon record in banded corals: Exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2): 12711280.CrossRefGoogle Scholar
Druffel, E. R. M., Williams, P. M., Bauer, J. E. and Ertel, J. R. 1992 Cycling of dissolved and particulate organic matter in the open ocean. Journal of Geophysical Research 97: 15,63915,659.CrossRefGoogle Scholar
Gove, H. E. 1992 The history of AMS, its advantages over decay counting: Applications and prospects. In Taylor, R. E., Long, A and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 214229.CrossRefGoogle Scholar
Grumbine, R. W. 1996 Automated passive microwave sea ice concentration analysis at NCEP. NOAA National Weather Service Technical Note: 113.Google Scholar
Honjo, S. et al. ms. in preparation.Google Scholar
Honjo, S. and Doherty, K. 1988 Large aperture time-series sediment traps: Design objectives, construction and application. Deep-Sea Research 35: 133149.CrossRefGoogle Scholar
Honjo, S., Dymond, J., Collier, R. and Manganini, S. J. 1995 Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Research 42: 831870.Google Scholar
Honjo, S., Honda, M. C., Manganini, S. J. and Ishii, H., in press, Biogeochemical cycles in the Sea of Okhotsk, a temporary ice-bound large marginal sea. Deep-Sea Research. Google Scholar
Honjo, S. and Manganini, S. J. 1993 Annual biogenic particle fluxes to the interior of the North Atlantic Ocean: Studied at 34°N 21°W and 48°N 21°W. Deep-Sea Research 40: 587607.Google Scholar
Honjo, S. and Okada, H. 1974 Community structure of Coccolithophores in the photic layer of the Mid-Pacific. Micropaleoceanography 20: 209230.Google Scholar
Japan Meteorological Agency 1991 The Results of Sea Ice Observation. Vol. 9. Tokyo, Naigai Press: 41 p.Google Scholar
Jones, G. A., McNichol, A. P., von Reden, R. F. and Schneider, R. J. 1990 The National Ocean Sciences AMS facility at Woods Hole. Nuclear Instruments and Methods in Physics Research 52: 278284.CrossRefGoogle Scholar
Kahn, M. I. and Williams, D. F. 1981 Oxygen and carbon isotopic composition of living planktonic foraminifera from the northeast Pacific Ocean. Paleogeography, Paleoclimatology and Paleoecology 33: 4776.CrossRefGoogle Scholar
Kitani, K. 1973 An oceanographic study of the Okhotsk Sea, particularly in regard to cold waters. Bulletin of Far Seas Fisheries Research Laboratory 9: 4576.Google Scholar
Lindsey, D., Minagawa, M. and Kawaguchi, K. 1995 Problem in sample preservation for stable isotope analysis (Abstract). 1995 Japan Ocean Science Spring Meeting: 334.Google Scholar
Manganini, S. J., Honjo, S., Altabet, M. and Honda, M. C. 1994 The effect of preservatives on settling particles as collected by sediment trap during EqPac experiment (Abstract). American Geophysical Union, American Societies of Limnology and Oceanography 75(3): 84.Google Scholar
McNichol, A. P., Gagnon, A. R., Jones, G. A. and Osborne, E. A. 1992 Illumination of a black box: Analysis of gas composition during graphite target preparation. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 321329.CrossRefGoogle Scholar
Mullin, M. M., Rau, G. H. and Eppley, R. W. 1984 Stable nitrogen isotopes in zooplankton: Some geographic and temporal variations in the North Pacific. Limnology and Oceanography 29: 12671273.CrossRefGoogle Scholar
Nakatsuka, T. 1995 Origin and transport of particulate organic matter in deep sea water column of ocean. In “Modern Chemical Oceanography”, special issue of Kaiyo Monthly 8: 121126 (in Japanese).Google Scholar
Nozaki, Y., Rye, D. M., Turekian, K. K. and Dodge, R. E. 1978 C-13 and C-14 variations in a Bermuda coral. Geophysical Research Letters 5: 825828.CrossRefGoogle Scholar
Nydal, R. and Lovseth, K. 1983 Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88: 36213642.CrossRefGoogle Scholar
Östlund, H. G. and Stuiver, M. 1980 GEOSECS Pacific radiocarbon. Radiocarbon 22(1): 2553.CrossRefGoogle Scholar
Östlund, H. G., Craig, H., Broecker, W. S. and Spencer, D. 1987 GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions. Vol. 7, Shorebased Data and Graphics. Washington, D.C., National Science Foundation: 200 p.Google Scholar
Pearcy, W. G. and Stuiver, M. 1983 Vertical transport of carbon-14 into deep-sea food webs. Deep-Sea Research 30: 427440.CrossRefGoogle Scholar
Rau, G. H., Takahashi, T., DesMarais, D. J., Repeta, D. J. and Martin, J. H. 1992 The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: Data from JGOFS site in the northeast Atlantic Ocean and a model. Geochimica et Cosmochimica Acta 56: 14131419.CrossRefGoogle Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Tanaka, N., Monaghan, M. C. and Rye, D. M. 1986 Contribution of metabolic carbon to mollusc and barnacle shell carbonate. Nature 320: 520523.CrossRefGoogle Scholar
Tans, P. P., Fung, I. Y. and Takahashi, T. 1990 Observational constraints on the global atmospheric CO2 budget. Science 247: 14311438.CrossRefGoogle Scholar
Tsunogai, S., Watanabe, S., Honda, M. C. and Aramaki, T. 1995 North Pacific Intermediate Water studied chiefly with radiocarbon. Journal of Oceanographic Society of Japan 51: 519536.CrossRefGoogle Scholar
Von Reden, K. F., Jones, G. A., Schneider, R. J., McNichol, A. P., Cohen, G. J. and Purser, K. H. 1992 The new National Ocean Science Accelerator Mass Spectrometer Facility at Woods Hole Oceanographic Institution: Progress and first results. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 478482.CrossRefGoogle Scholar
Walsh, J. J., Premuzic, E. T., Gaffney, J. S., Rowe, G. T., Harbottle, G., Stoenner, R. W., Balsam, W. L., Betzer, P. R. and Macro, S. A. 1985 Organic storage of CO2 on the continental slope off the mid-Atlantic bight, the southeastern Bering Sea, and the Peru coast. Deep-Sea Research 32: 853883.CrossRefGoogle Scholar
Williams, P. M., Smith, K. L., Druffel, E. R. M. and Linick, T. W. 1981 Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity. Nature 292: 448449.CrossRefGoogle Scholar
Williams, P. M., Druffel, E. R. M. and Smith, K. L. Jr. 1987 Dietary carbon sources for deep-sea organisms as inferred from their organic radiocarbon activities. Deep-Sea Research 34: 253266.CrossRefGoogle Scholar