Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T23:07:22.509Z Has data issue: false hasContentIssue false

INGEIS Radiocarbon Laboratory Dates II

Published online by Cambridge University Press:  18 July 2016

Miguel C Albero
Affiliation:
INGEIS, Pabellón INGEIS, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Fernando E Angiolini
Affiliation:
INGEIS, Pabellón INGEIS, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following list consists of archaeologic and geologic dates from Argentina processed in the 14C laboratory of INGEIS. The ages presented were obtained by liquid scintillation counting of benzene, using the techniques outlined in a previous paper (Albero & Angiolini, 1983). The results are expressed in 14C years relative to 1950, using the Libby half-life of 5570 yr.

Type
Date Lists
Copyright
Copyright © The American Journal of Science 

References

Albero, M C and Angiolini, F E, 1983, INGEIS radiocarbon laboratory dates I: Radiocarbon, v 25, p 831842.Google Scholar
Angiolini, F E and Albero, M C, 1983, A secondary standard for radiocarbon dating, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 11th, Proc: Radiocarbon, v 25, no. 2, p 541546.Google Scholar
Auer, V, 1950, Las capas volcánicas como base de la cronología postglacial de Fuegopatagonia: Rev Investigaciones Agríc, v 3, no. 2, p 49208.Google Scholar
Auer, V, 1956, The Pleistocene of Fuegopatagonia. I. The ice and interglacial ages: Ann Acad Sci Fennicae, A. 45.Google Scholar
Auer, V, 1974, The isorhitmicity subsequent to the Fuego-patagonian and Fennoscandian Ocean level transgressions and regression of the latest glaciation. The importance of the tephrochronology, C-14 dating and micropaleontology for Quaternary research: Ann Acad Sci Fennicae, A. 115.Google Scholar
Canals Frau, S, 1956, La cultura de Agrelo, Mendoza: Runa, v 7, no. 2, p 160187.Google Scholar
Coleman, D D, 1973, Illinois State Geological Survey radiocarbon dates IV: Radiocarbon, v 15, p 7585.Google Scholar
Fernández, J, 1967, Elementos divergentes en el material lítico de los horizontes precerámicos del Noroeste argentino: An Soc Cie Argentina, v 184, p 97127.Google Scholar
Fernández, J, 1971, La edad de la Piedra en la Puna de Atacama: Rev Inst Antropol, 3rd ser, p 1136, Tucumán.Google Scholar
Fernández, J, 1974, Río Grande. Exploración de un centro precerámico en las altas montañas de la Puna: Diputación provincial de Barcelona, Instituto de Prehistoria y Arqueología: Ampurias, v 38.Google Scholar
Fernández, J, 1983a, Arqueología de la Ciudad del Nombre de Jesús, poblado español del siglo XVI en la boca oriental del estrecho de Magallanes, in Presencia hispánica en la arqueología argentina: Univ Nordeste, v 2.Google Scholar
Fernández, J, 1983b, Cronología y posición estratigráfica del llamad. hombre fósil de Mata Molle: Hist Nat, v 3, no. 7 p 5771.Google Scholar
Fernández, J, Angiolini, F E, and Ancíbor, E, 1983, Algunos rasgos paleoambientales y climáticos (ca 28.000–35.000 años AP) de la sierra Catán Lil, Neuquén, Argentina: Hist Nat, v 3, no. 11, p 113124.Google Scholar
González, A R, 1952, Antiguo horizonte precerámico en las sierras Centrales de la Argentina: Runa, v 5, p 110133.Google Scholar
Gradín, C J, 1977, Pinturas rupestres del Alero Cárdenas, Pcia de Santa Cruz: Relac Soc Arg Antropol, Buenos Aires, v 2, p 143158.Google Scholar
Gradín, C J, Aschero, C, and Aguerre, A M, 1979, Arqueología del Río Pinturas, Pcia de Santa Cruz: Relac Soc Arg Antropol, Buenos Aires, v 13, p 183227.Google Scholar
Groeber, P, 1947, Geología del arroyo de Mata Molle: Gobernación, Notas Mus La Plata, v 11, p 329334.Google Scholar
Johnsen, S J, Dansgaard, W, Clausen, H W, and Langway, C C, 1972, Oxygen isotope profiles through the Antartic and Groenland ice sheets: Nature, v 235, p 429434.Google Scholar
Kuc, T and Rózánski, K, 1979, A small volume Teflon-copper vial for 14C low level liquid scintillation counting: Internad Jour Appl Radiations isotopes, v 30, no. 7, p 452454.Google Scholar
Malagnino, E, Olivero, E, Rinaldi, C A, and Spikerman, J, 1983, Depósitos glaciarios del grupo de islas James Ross, Antártida: Rev Asoc Geol Arg, v 38, no. 1, p 120125.Google Scholar
Markgraff, V, 1979, Paleoclimatic reconstruction of the last 15,000 years in Subantarctic and temperate regions of Argentina, in Symposium des palinologues de langue française: Palynol et climats, Paris.Google Scholar
Markgraff, V, 1983, Late and postglacial vegetational and paleoclimatic change in subantarctic, temperate, and arid environments in Argentina: Palynology, v 7, p 4370.Google Scholar
Menguin, O F, 1953–1954, Culturas precerámicas en Bolivia: Runa, v 1–2, p 125132.Google Scholar
Ralph, E K, Michael, H N, and Han, M C, 1973, Radiocarbon dates and reality: MASCA Newsletter, v 9, p 120.Google Scholar
Soil Survey Staff, 1975, Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys: Soil conservation Service, U S Dept Agric, Washington D C.Google Scholar
Speden, H, 1962, Fossiliferous Quaternary marine deposits in the McMurdo Sound region, Antarctica: New Zealand Jour Geol Geophys, v 5, no. 5, p 746748.Google Scholar
Turner, J, 1967, A new species of fossil Chlamys from Wright Valley McMurdo Sound, Antarctica: New Zealand Jour Geol Geophys, v 10, p 446454.Google Scholar
Vignati, M A, 1957–1959, El hombre fósil de Mata Molle: Notas Mus La Plata, v 14, p 327351.Google Scholar