Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T01:13:44.752Z Has data issue: false hasContentIssue false

IFAN Radiocarbon Laboratory Measurements I

Published online by Cambridge University Press:  18 July 2016

Maurice Ndeye*
Affiliation:
Laboratoire carbone 14, IFAN Cheikh Anta Diop BP 206, Dakar, Senegal.
Matar Sène
Affiliation:
Institut de Technologie Nucléaire Appliquée (ITNA), Université Cheikh Anta Diop, Dakar, Senegal.
Alpha Oumar Diallo
Affiliation:
Laboratoire carbone 14, IFAN Cheikh Anta Diop BP 206, Dakar, Senegal.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results obtained from a liquid scintillation counter using BGO (Bi4Ge3012) tubes have produced more precise radiocarbon dates in our laboratory. Duplicate analyses confirm the electronic stability of the counter with a background of 0.1 cpm. Our 14C dates agree well with those from another laboratory (Paris 6-LOCEAN). Most of the 14C dates in this study were obtained on samples taken from different archaeological sites. Calibration of the various dates with the appropriate software (CALIB 5.0 in our case) allows better interpretation of the results and their importance in this understudied region. In this paper, we investigate the performance of the counter by analyzing samples from archaeological and marine sites in Senegal and Mauritania, and report the results in our first laboratory date list.

Type
Date Lists
Copyright
Copyright © 2011 The Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Bocoum, H, McIntosh, SK, McIntosh, RJ. 1992. L'âge du fer dans la moyenne vallée du fleuve: chronologie et integration. Communication présentée au cinquième colloque de l'association ouest africaine d'archéologie, Ouagadougou, 27 July–1 August 1992.Google Scholar
Broecker, WS, Peng, T-H, Stuiver, M. 1978. An estimate of the upwelling rate in the equatorial Atlantic based on the distribution of bomb radiocarbon. Journal of Geophysical Research 83(C12):6179–86.Google Scholar
Cook, GT, Hold, AG, Naysmith, P, Anderson, R. 1990. Applicability of ‘new technology’ scintillation counters (Packard 2000 CA/LL and 2260 XL) for 14C dating. Radiocarbon 32(2):233–4.Google Scholar
Diop, CA. 1974. Physique nucléaire et chronologie absolue. Initiations et Etudes Africaines XXXI. Université de Dakar–IFAN.Google Scholar
Horrocks, DL. 1974. Applications of Liquid Scintillation Counting. New York: Academic Press.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.Google Scholar
Ndeye, M, Ka, O, Bocoum, H, Diallo, AO. 2003. Rehabilitation of the Laboratoire de carbone 14-Dakar (Senegal) with a super low-level liquid scintillation counting system. Radiocarbon 46(1):117–22.Google Scholar
Ravisé, A. 1970. Industries en os de la region de St-louis. Notes africaines 128:98102.Google Scholar
Rozanski, K, Stichler, W, Gonfiatini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1990. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506–19.Google Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Vernet, P. 1993. Préhistoire de la Mauritanie. CCF/Sepia. Paris: Nouakchott.Google Scholar