Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T15:01:54.008Z Has data issue: false hasContentIssue false

HUMAN DIET DURING THE STONE AGE AND EARLY METAL PERIOD (7000–1 CAL BC) IN LITHUANIA: AN UPDATE

Published online by Cambridge University Press:  09 June 2022

Edvardas Simčenka
Affiliation:
Lithuanian Institute of History, Tilto 17 st. 5, 01101 Vilnius, Lithuania
Justina Kozakaitė
Affiliation:
Vilnius University, M. K. Čiurlionio st. 21, 03101 Vilnius, Lithuania
Giedrė Piličiauskienė
Affiliation:
Vilnius University, M. K. Čiurlionio st. 21, 03101 Vilnius, Lithuania
Lukas Gaižauskas
Affiliation:
Lithuanian Institute of History, Tilto 17 st. 5, 01101 Vilnius, Lithuania
Gytis Piličiauskas*
Affiliation:
Lithuanian Institute of History, Tilto 17 st. 5, 01101 Vilnius, Lithuania
*
*Corresponding author. Email: [email protected]

Abstract

In this study we present new carbon (δ13C) and nitrogen (δ15N) stable isotope data of human (n=13) and animal (n=40) bone and/or dentine collagen samples, alongside accelerator mass spectrometry radiocarbon (AMS 14C) dates of human remains (n=16). The studied material was sampled from Lithuanian sites dating from the Late Mesolithic to the pre-Roman Iron Age. For the first time, we present δ13C and δ15N data from Lithuanian freshwater fish as well as AMS 14C, δ13C, and δ15N measurements of human remains from six disturbed graves at the Donkalnis cemetery and from two pre-Roman Iron Age graves. According to the new results, human diet derived protein from the Late Mesolithic to Subneolithic (ca. 7000–2900 cal BC) was primarily based on freshwater fish. While previous macrobotanical and stable isotope studies has suggested that C4 plants, i.e., millet, became more widely used from the Late Bronze Age (1100–500 cal BC), our data suggests that millet consumption may have decreased during the pre-Roman Iron Age (500–1 cal BC) in the southeastern Baltic.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of archaeological science 17(4):431451. doi: 10.1016/0305-4403(90)90007-R.CrossRefGoogle Scholar
Antanaitis-Jacobs, I, Kisieliene, D, Stančikaitė, M. 2002. Macrobotanical and palynological research at two archaeological sites in Lithuania. Nordic archaeobotany—NAG 2000 in Umeå. Environmental Archaeology 15:521.Google Scholar
Antanaitis-Jacobs, I, Richards, M, Daugnora, L, Jankauskas, R, Ogrinc, N. 2009. Diet in early Lithuanian prehistory and the new stable isotope evidence. Archaeologia Baltica 12:1230.Google Scholar
Baubonis, Z, Dakanis, B. 1998. Raginėnų 3-iojo pilkapyno tyrinėjimai. Archeologiniai tyrinėjimai Lietuvoje: 1996 ir 1997 metais:131–135.Google Scholar
Bleicher, I. 2014. Dendrochronological analyses of wood samples from a Late Bronze to early Iron Age site at Lake Luokesa, Lithuania. Vegetation History and Archaeobotany 23(4):355365. doi: 10.1007/s00334-014-0463-1.CrossRefGoogle Scholar
Bogaard, A, Heaton, TH, Poulton, P, Merbach, I. 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34(3):335343. doi: 10.1016/j.jas.2006.04.009.CrossRefGoogle Scholar
Bonafini, M, Pellegrini, M, Ditchfield, P, Pollard, AM. 2013. Investigation of the “canopy effect” in the isotope ecology of temperate woodlands. Journal of Archaeological Science 40(11):39263935. doi: 10.1016/j.jas.2013.03.028.CrossRefGoogle Scholar
Butrimas, A. 2019. Biržulis. Medžiotojai, žvejai ir senieji žemdirbiai X-II tūkstantmetyje pr. Kr. I tomas, Paminklų tyrinėjimai. Vilnius: Vilniaus dailės akademijos leidykla.Google Scholar
Butrimas, A, Kunskas, R, Česnys, G, Balčiūnienė, I, Jankauskas, R. 1985. Duonkalnis: vėlyvojo neolito gyvenvietė, alkas ir kapinynas (Jonapolės apyl., Telšių raj.). Lietuvos archeologija 4:2566.Google Scholar
Butrimas, A, Ostrauskienė, D. 2004. Biržulio apyežerio neolito gyvenviečių virvelinė keramika. Acta Academiae Artium Vilnensis 34:121–44.Google Scholar
Čivilytė, A, Podėnas, V, Vengalis, R. 2017. Garnių I piliakalnis. Archeologiniai tyrinėjimai Lietuvoje 2016 metais:69–73.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809. doi: 10.1038/317806a0.CrossRefGoogle Scholar
DeNiro, MJ. 1987. Stable isotopy and archaeology. American scientist 75(2):182191. https://www.jstor.org/stable/27854539.Google Scholar
Eriksson, G, Lõugas, L, Zagorska, I. 2003. Stone age hunter-fisher-gatherers at Zvejnieki, northern Latvia: stable isotope and archaeozoological data. Before Farming 1(2):125.CrossRefGoogle Scholar
Filipović, D, Meadows, J, Dal Corso, M, Kirleis, W, Alsleben, A, Akeret, Ö, Bittmann, F, Bosi, G, Ciută, B, Dreslerová, D, Effenberger, H, Gyulai, F, Heiss, AG, Hellmund, M, Jahns, S, Jakobitsch, T, Kapcia, M, Klooß, S, Kohler-Schneider, M, Kroll, H, Makarowicz, P, Marinova, E, Märkle, T, Medović, A, Mercuri, AM, Mueller-Bieniek, A, Nisbe, R, Pashkevich, G, Perego, R, Pokorný, P, Pospieszny, Ł, Przybyła, M, Reed, K, Rennwanz, J, Stika, H-P, Stobbe, A, Tolar, T, Wasylikowa, K, Wiethold, J, Zerl, T. 2020. New AMS 14C dates track the arrival and spread of broomcorn millet cultivation and agricultural change in prehistoric Europe. Scientific Reports 10 (13698). doi: 10.1038/s41598-020-70495-z.CrossRefGoogle ScholarPubMed
Fraser, RA, Bogaard, A, Heaton, T, Charles, M, Jones, G, Christensen, BT, Halstead, P, Merbach, I, Poulton, PR, Sparkes, D, Styring, AK. 2011. Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38(10):27902804. doi: 10.1016/j.jas.2011.06.024.CrossRefGoogle Scholar
Girininkas, A. 2002. Kretuono 1-oji gyvenvietė. Archeologiniai tyrinėjimai Lietuvoje 2001 metais:6–9.Google Scholar
Girininkas, A, Česnys, G, Balčiūnienė, I, Jankauskas, R. 1985. Kretuono 1-os gyvenvietės vidurinio neolito kapai (Švenčionių raj., Reškutėnų apyl., Reškutėnų k.). Lietuvos archeologija 4:5–9.Google Scholar
Hedges, REM, Reynard, LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of archaeological science 34(8):12401251. doi: 10.1016/j.jas.2006.10.015.CrossRefGoogle Scholar
Heron, C, Craig, OE, Lucquin, AJA, Steele, VJ, Thompson, A, Piličiauskas, G. 2015. Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3300-2400 cal BC. Journal of Archaeological Science 63:3343. doi: 10.1016/j.jas.2015.08.002.CrossRefGoogle Scholar
Jankauskas, R. 2012. Violence in the Stone Age from an eastern Baltic perspective. In: Schulting, RJ, Fibiger, L, editors. Sticks, Stones, and Broken Bones: Neolithic Violence in a European Perspective. Oxford: Oxford University Press. p. 3550.CrossRefGoogle Scholar
Jenkins, SG, Partridge, ST, Stephenson, TR, Farley, SD, Robbins, CT. 2001. Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129(3):336341. doi: 10.1007/s004420100755.CrossRefGoogle ScholarPubMed
Kottelat, M, Freyhof, J. 2007. Handbook of European freshwater fishes. Berlin: Publications Kottelat, Cornol and Freyhof.Google Scholar
Lelli, R, Allen, R, Biondi, G, Calattini, M, Conati Barbaro, C, Antonia Gorgoglione, M, Manfredini, A, Martínez-Labarga, C, Radina, F, Silvestrini, M, Tozzi, C, Rickards, O, Craig, O. 2012. Examining dietary variability of the earliest farmers of South-Eastern Italy. American journal of physical anthropology 149(3):380390. doi: 10.1002/ajpa.22134.CrossRefGoogle ScholarPubMed
Luchtanas, A. 1992. Ankstyvojo geležies amžiaus Kernavės kapinynas. Lietuvos Archeologija 9:3539.Google Scholar
Makarewicz, CA. 2014. Winter pasturing practices and variable fodder provisioning detected in nitrogen (δ15N) and carbon (δ13C) isotopes in sheep dentinal collagen. Journal of Archaeological Science 41:502510. doi: 10.1016/j.jas.2013.09.016.CrossRefGoogle Scholar
Meadows, J, Bērziņš, V, Legzdiņa, D, Lübke, H, Schmölcke, U, Zagorska, I, Zariņa, G. 2016. Stone-age subsistence strategies at Lake Burtnieks, Latvia. Journal of Archaeological Science: Reports 17:9921006. doi: 10.1016/j.jasrep.2016.03.042.Google Scholar
Merkevičius, A. 2012. Turlojiškė archaeological complex. In: Zabiela, G, Baubonis, Z, Marcinkevičiūtė, E, editors. Archaeological investigations in independent Lithuania (1990-2010). Vilnius: Society of the Lithuanian Archaeology. p. 1216.Google Scholar
Minkevičius, K. 2021. Žemdirbystės raida ir gyvenviečių dinamika Lietuvoje XI a. pr. Kr.—XII a. (archeobotaninių tyrimų duomenimis) [dissertation]. Vilnius: Vilniaus universitetas. doi: 10.15388/vu.thesis.62.CrossRefGoogle Scholar
Minkevičius, K, Podėnas, V, Urbonaitė-Ubė, M, Ubis, E, Kisielienė, D. 2020. New evidence on the southeast Baltic Late Bronze Age agrarian intensification and the earliest AMS dates of Lens culinaris and Vicia faba. Vegetation History and Archaeobotany 29:327338. doi: 10.1007/s00334-019-00745-2.CrossRefGoogle Scholar
Mittnik, A, Wang, CC, Pfrengle, S, Daubaras, M, Zariņa, G, Hallgren, F, Allmäe, R, Khartanovich, V, Moiseyev, V, Tõrv, M, Furtwängler, A, Valtueña, AA, Feldman, M, Economou, C, Oinonen, M, Vasks, A, Balanovska, E, Reich, D, Jankauskas, R, Haak, W, Schiffels, S, Krause, J. 2018. The genetic prehistory of the Baltic Sea region. Nature communications 9(1):111. doi: 10.1038/s41467-018-02825-9.Google ScholarPubMed
Newsome, SD, Koch, PL, Etnier, MA, Aurioles-Gamboa, D. 2006. Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Marine Mammal Science 22(3):556572. doi: 10.1111/j.1748-7692.2006.00043.x.CrossRefGoogle Scholar
Newsome, SD, Miller, GH, Magee, JW, Fogel, ML. 2011. Quaternary record of aridity and mean annual precipitation based on δ15N in ratite and dromornithid eggshells from Lake Eyre, Australia. Oecologia 167(4):11511162. doi: 10.1007/s00442-011-2046-5.CrossRefGoogle ScholarPubMed
Oras, E, Lucquin, A, Lõugas, L, Tõrv, M, Kriiska, A, Craig, OE. 2017. The adoption of pottery by north-east European hunter-gatherers: Evidence from lipid residue analysis. Journal of Archaeological Science 78:112119. doi: 10.1016/j.jas.2016.11.010.CrossRefGoogle Scholar
Ostrauskas, T. 2002. Archeologiniai žvalgymai Katros ir Grūdos upių aukštupių baseinuose. Archeologiniai tyrinėjimai Lietuvoje 2001 metais:25–29.Google Scholar
Piličiauskas, G. 2016. Lietuvos pajūris subneolite ir neolite. Žemės ūkio pradžia. Lietuvos archeologija 42:25103.Google Scholar
Piličiauskas, G. 2018. Virvelinės keramikos kultūra Lietuvoje 2800–2400 cal BC. Vilnius: Lietuvos istorijos institutas.CrossRefGoogle Scholar
Piličiauskas, G, Lavento, M, Oinonen, M, Grižas, G. 2011. New 14C dates of Neolithic and Early Metal period ceramics in Lithuania. Radiocarbon 53(4):629643. doi: 10.1017/S0033822200039096.CrossRefGoogle Scholar
Piličiauskas, G, Heron, C. 2015. Aquatic radiocarbon reservoir offsets in the southeastern Baltic. Radiocarbon 57(4):539556. doi: 10.2458/azu_rc.57.18447.CrossRefGoogle Scholar
Piličiauskas, G, Jankauskas, R, Piličiauskienė, G, Dupras, T. 2017a. Reconstructing Subneolithic and Neolithic diets of the inhabitants of the SE Baltic coast (3100–2500 cal BC) using stable isotope analysis. Archaeological and Anthropological Sciences 9(7):14211437. doi: 10.1007/s12520-017-0463-z.CrossRefGoogle Scholar
Piličiauskas, G, Jankauskas, R, Piličiauskienė, G, Craig, OE, Charlton, S, Dupras, T. 2017b. The transition from foraging to farming (7000–500 cal BC) in the SE Baltic: A re-evaluation of chronological and palaeodietary evidence from human remains. Journal of Archaeological Science: Reports 14:530542. doi: 10.1016/j.jasrep.2017.06.004.Google Scholar
Piličiauskas, G, Matiukas, A, Peseckas, K, Mažeika, J, Osipowicz, G, Piličiauskienė, G, Rannamäe, E, Pranckėnaitė, E, Vengalis, R, Pilkauskas, M. 2020. Fishing history of the East Baltic during the Holocene according to underwater multiperiod riverine site Kaltanėnai, northeastern Lithuania. Archaeological and Anthropological Sciences 12(12):126. doi: 10.1007/s12520-020-01233-9.CrossRefGoogle Scholar
Podėnas, V. 2020. Emergence of hilltop settlements in the southeastern Baltic: new AMS 14C dates from Lithuania and revised chronology. Radiocarbon 62(2):361377. doi: 10.1017/RDC.2019.152.CrossRefGoogle Scholar
Podėnas, V, Troskosky, C, Kimontaitė, A, Čivilytė, A. 2018. Garnių piliakalnis I. Archeologiniai tyrinėjimai Lietuvoje 2017 metais:85–89.Google Scholar
Pollmann, B. 2014. Environment and agriculture of the transitional period from the Late Bronze to early Iron Age in the eastern Baltic: an archaeobotanical case study of the lakeshore settlement Luokesa 1, Lithuania. Vegetation History and Archaeobotany 23:403418.CrossRefGoogle Scholar
Pospieszny, Ł, Makarowicz, P, Lewis, J, Górski, J, Taras, H, Włodarczak, P, Szczepanek, A, Ilchyshyn, V, Jagodinska, MO, Czebreszuk, J, Muzolf, P, Nowak, M, Polańska, M, Juras, A, Chyleński, M, Wójcik, I, Lasota-Kuś, A, Romaniszyn, J, Tunia, K, Przybyła, MM, Grygiel, R, Matoga, A, Makowiecki, D, Goslar, T. 2021. Isotopic evidence of millet consumption in the Middle Bronze Age of East-Central Europe. Journal of Archaeological Science 126 (2021) 105292. doi: 10.1016/j.jas.2020.105292 CrossRefGoogle Scholar
Pranckėnaitė, E. 2014. Living in wetlands in the southeastern Baltic region during the Late Bronze to early Iron Age: the archaeological context of the Luokesa lake settlements. Vegetation history and archaebotany 23(4):341354. doi: 10.1007/s00334-014-0462-2.CrossRefGoogle Scholar
Ramsey, CB. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360. doi: 10.1017/S0033822200033865.CrossRefGoogle Scholar
Reimer, PJ, Austin, WE, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Richards, MP, Hedges, R. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26(6):717722. doi: 10.1006/jasc.1998.0387.CrossRefGoogle Scholar
Richards, MP, Schulting, RJ, Hedges, REM. 2003. Sharp shift in diet at onset of Neolithic. Nature 425(6956):366366. doi: 10.1038/425366a.CrossRefGoogle ScholarPubMed
Schmölcke, U, Meadows, J, Ritchie, K, Bērziņš, V, Lübke, H, Zagorska, I. 2016. Neolithic fish remains from the freshwater shell midden Riņņukalns in northern Latvia. Environmental Archaeology 21(4):325333. doi: 10.1179/1749631415Y.0000000011.CrossRefGoogle Scholar
Schoeninger, MJ. 2009. Stable isotope evidence for the adoption of maize agriculture. Current Anthropology 50(5):633640. doi: 10.1086/605111.CrossRefGoogle ScholarPubMed
Szidat, S, Vogel, E, Gubler, R, Lösch, S. 2017. Radiocarbon dating of bones at the LARA laboratory in Bern, Switzerland. Radiocarbon 59(3):831842. doi: 10.1017/RDC.2016.90.CrossRefGoogle Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292(5821):332335. doi: 10.1038/292332a0.CrossRefGoogle ScholarPubMed
Van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695. doi: 10.1006/jasc.1998.0385.CrossRefGoogle Scholar