Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-17T10:57:10.920Z Has data issue: false hasContentIssue false

Holocene Environmental Changes in Western Hungary

Published online by Cambridge University Press:  18 July 2016

Zsuzsanna Szántó
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Sciences, Laboratory of Environmental Studies, 4026 Debrecen, Bem tér 18/c, Hungary. Corresponding author. Email: [email protected]
Zsófia Medzihradszky
Affiliation:
Hungarian Natural History Museum, Department of Botany, 1087 Budapest, Könyves Kálmán krt. 40, Hungary. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the reasons for change in paleoecological conditions and their effects on different cultures at the beginning and during the Holocene period in western Hungary using radiocarbon data combined with paleoecological and paleolimnological results. Two sites were investigated in the southern and northern part of the ancient bay of Balaton Lake: Keszthely-Úsztatómajor and Főnyed I. 14C dating of 2 core samples represented a chronology from 11,000 cal BC to 2000 cal BC (10,700 BP to 3700 BP) and from 6200 cal BC to 1200 cal BC (7300 BP to 3000 BP), respectively. A relatively constant inverse sediment accumulation rate was observed in both cases (23 yr/cm and 33 yr/cm, respectively). In the case of Főnyed I, a sharp break was observed in the sedimentation curve around 6000–4800 cal BC (6000 BP). Changes in the vegetation due to human activity were observed in a larger extent only at the end of Late Neolithic, with the most significant changes detected in the landscape coinciding with the presence of Lengyel III culture in the region. The appearance of higher amounts of pollen of cereals at the sites proved the presence of crop cultivation. However, the role of plant cultivation may have been limited for the ancient inhabitants of the Kis-Balaton region due to a limited amount of soil suitable for agriculture and due to the extensive water table. Further changes in vegetation were observed during the Late Copper Age (Baden culture) and the period of Early and Middle Bronze Age, respectively. Signs of forest clearing during the period have not been detected and the increased peak of Fagus indicates climatic change. The low intensity of anthropogenic activity should not be attributed to geographic isolation.

Type
Part II
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Berglund, GE, Ralska-Jasiewiczowa, M. 1986. Pollen analysis and pollen diagrams. In: Berglund, BE, editor. Handbook of Holocene Palaeohydrology. Chichester: Wiley. p 455–84.Google Scholar
Birks, HJB, Birks, HH. 1980. Quaternary paleoecology. In: Kaland, PE, Moe, D, editors. Quaternary Paleoecology. Baltimore: University Park Press. p 156–76.Google Scholar
Bradley, RS. 1985. Quaternary paleoclimatology: methods of paleoclimatic reconstruction. In: Briggs, DE, Crowther, PR, editors. Quarternary Paleoclimatology London: Chapman and Hall. 472 p.Google Scholar
Erdtman, G. 1943. An introduction to pollen analysis. In: Waltham Verdoorn, F, editor. An Introduction to Pollen Analysis. 4th edition. Waltham, Massachusetts: Chronica Botanica Company USA. 139 p.Google Scholar
Faegri, K, Iverseon, J, Krzywinski, K, editors. 1989. Textbook of Pollen Analysis. 4th edition. New York: John Wiley & Sons. 328 p.Google Scholar
Hertelendi, E, Csongor, É, Záborsky, L, Molnár, J, Gál, J, Györffi, M, Nagy, S. 1989. A counter system for high-precision 14C dating. Radiocarbon 31(3):399406.CrossRefGoogle Scholar
Költő, L, Vándor, L. 1996. Évezredek üzenete a láp világából. A Somogy Megyei Múzeumok Igazgatósága és Zala Megyei Múzeumok Igazgatósága Kaposvár-Zalaegerszeg. (Message of the past from the world of the mire. Archaeological investigations of the Kis-Balaton area.) 165 p. In Hungarian.Google Scholar
Maher, L. 1972. Nomograms for computing 0.95 confidence limits of pollen data. Review Paleobotany and Palynology 13:8593.CrossRefGoogle Scholar
Medzihradszky, Zs. 2001a. The Holocene sequence of the pollen record from Keszthely-Úsztatómajor, Hungary. Annales Historico-Naturales Musei Nationalis Hungarici 93:512.Google Scholar
Medzihradszky, Zs. 2001b. The reconstruction of the vegetation in the Kis-Balaton area during Lengyel period. Preliminary report. In: Regenye, J, editor. Sites and Stones: Lengyel Culture in Western Hungary and Beyond. Veszprém: Directorate of the Veszprém County Museums. p 143–8.Google Scholar
Moore, PD, Webb, JA, Collinson, ME. 1991. Pollen analysis. In: Turner, HJ, editor. Pollen Analysis. Oxford: Blackwell. p 130–96.Google Scholar
Pilcher, JR. 1993. Radiocarbon dating and the palynologist: a realistic approach to precision and accuracy. In: Chambers, FM, editor. Climate Change and Human Impact on the Landscape. London: Chapman and Hall. p 2332.Google Scholar
Reille, M. 1992. Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. URA CNRS, Marseille. 520 p.Google Scholar
Reille, M. 1995. Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie. URA CNRS, Marseille. 327 p.Google Scholar
Sági, K. 1966. Magyarország régészeti topográfiája I. Veszprém megye. A keszthelyi és tapolcai járás. (Archäologische Topographie Ungarns. Kreise von Keszthely und Tapolca im Komitat Veszprém.) Budapest: Akadémiai Kiadó. 266 p. In Hungarian.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–21.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35(1):215–30.CrossRefGoogle Scholar