Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T12:47:59.221Z Has data issue: false hasContentIssue false

A High-Resolution Radiocarbon Calibration Between 11,700 and 12,400 Calendar Years Bp Derived from 230Th Ages of Corals from Espiritu Santo Island, Vanuatu

Published online by Cambridge University Press:  18 July 2016

G. S. Burr
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Box 0081, Tucson, Arizona 85721-0081, USA
J. Warren Beck
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Box 0081, Tucson, Arizona 85721-0081, USA
F. W. Taylor
Affiliation:
Institute for Geophysics, The University of Texas at Austin, 4412 Spicewood Springs Road, Bld. 600, Austin, Texas 78759-8500, USA
Jacques Récy
Affiliation:
Laboratoire de Géodynamique Sous-Marine, Observatoire Océanologique, B.P. 48, 06230 Villefranche-sur-Mer, France
R. Lawrence Edwards
Affiliation:
Minnesota Isotope Laboratory, Department of Geology and Geophysics, University of Minnesota, 310 Pillsbury Drive, SE, Minneapolis, Minnesota 55455, USA
Guy Cabioch
Affiliation:
Laboratoire de Géodynamique Sous-Marine, Observatoire Océanologique, B.P. 48, 06230 Villefranche-sur-Mer, France
Thierry Corrège
Affiliation:
Laboratoire de Géodynamique Sous-Marine, Observatoire Océanologique, B.P. 48, 06230 Villefranche-sur-Mer, France
D. J. Donahue
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Box 0081, Tucson, Arizona 85721-0081, USA
J. M. O'malley
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Box 0081, Tucson, Arizona 85721-0081, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents radiocarbon results from a single Diploastrea heliopora coral from Vanuatu that lived during the Younger Dryas climatic episode, between ca. 11,700 and 12,400 calendar yr bp. The specimen has been independently dated with multiple 230Th measurements to permit calibration of the 14C time scale. Growth bands in the coral were used to identify individual years of growth. 14C measurements were made on each year. These values were averaged to achieve decadal resolution for the 14C calibration. The relative uncertainty of the decadal 14C data was below 1% (2σ). The data are in good agreement with the existing dendrochronology and allow for high-resolution calibration for most years. Variations in the fine structure of the 14C time series preserved in this specimen demonstrate sporadic rapid increases in the Δ14C content of the surface ocean and atmosphere. Certain sharp rises in Δ14C are coincident with gaps in coral growth evidenced by several hiatuses. These may be related to rapid climatic changes that occurred during the Younger Dryas. This is the first coral calibration with decadal resolution and the only such data set to extend beyond the dendrochronology-based 14C calibration.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Barbetti, M., Bird, T., Dolezal, G., Taylor, G., Francey, R., Cook, E. and Peterson, M. 1992 Radiocarbon variations from Tasmanian conifers: First results from late Pleistocene and Holocene logs. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 806817.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G. and Rougerie, F. 1996 Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382: 241244.Google Scholar
Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and l4C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.Google Scholar
Broecker, W. S. 1963 A preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurements on marine carbonates. Journal of Geophysical Research 68: 28172834.Google Scholar
Broecker, W. S., and Thurber, D. L. 1965 Uranium series dating of corals and oolites from Bahaman and Florida Key limestones. A preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurements on marine carbonates. Science 149: 5860.Google Scholar
Brown, T. A., Farwell, G. W., Grootes, P. M., Schmidt, F. H. and Stuiver, M. 1993 Intra-annual variability of the radiocarbon content of corals from the Galapagos Islands. Radiocarbon 35(2): 245251.Google Scholar
Burr, G. S., Edwards, R. L., Donahue, D. J., Druffel, E. R. M. and Taylor, F. W. 1992 Mass spectrometric 14C and U-Th measurements in coral. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 611618.Google Scholar
Cabioch, G., Taylor, F. W., Récy, J., Edwards, R. L., Gray, S. C., Faure, G., Burr, G. S. and Corrège, T. 1997 Environmental and tectonic influences on growth and internal structure of a fringing reef at Tasmaloum (SW Espiritu Santo, New Hebrides island arc, SW Pacific). Special Publication of the International Association of Sedimentologists (IAS) 25: 261277.Google Scholar
Donahue, D. J., Jull, A. J. T. and Toolin, L. J. 1990 Radiocarbon measurements at the University of Arizona AMS facility. In Yiou, R. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods in Physics Research B52: 224228.Google Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. 1987 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81: 175192.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962968.Google Scholar
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Różanski, K., Tisnerat, N., Walanus, A., Wicik, B. and Więckowski, K. 1995 High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377: 414417.CrossRefGoogle Scholar
Goslar, T., Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Różanski, K., Szeroczyńa, K., Walnus, A., Wicik, B., Więckowski, K., Arnold, M., and Bard, E. 1992 Possibilities for reconstructing radiocarbon level changes during the Late Glacial by using a laminated sequence of Gościąż Lake. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 826832.CrossRefGoogle Scholar
Goslar, T., Hercman, H., Lauritzen, S.-E., and Pazdur, A. (ms.) 1997 Comparison of radiocarbon and U/Th dates of speliothems. Paper presented at the 16th International 14C Conference, Groningen, June 1997.Google Scholar
Hajdas, I., and Bonani, G. (ms.) 1997 A rise in the atmospheric 14C content at 11,000 BP – a World-wide marker for the onset of the Younger Dryas. Paper presented at the 16th International 14C Conference, Groningen, June 1997.Google Scholar
Hajdas, I., Ivy, S. D., Beer, J., Bonani, G., Imboden, D., Lotter, A. F., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Climate Dynamics 9: 107116.Google Scholar
Hajdas, I., Zolitschka, B., Ivy-Ochs, S. D., Beer, J., Bonani, G., Leroy, S. A. G., Negendank, J. W., Ramrath, M. and Suter, M. 1995 AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14: 137143.Google Scholar
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Southon, J., Peterson, L. C., Alley, R. and Sigman, D. M. 1998 Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–68.CrossRefGoogle Scholar
Knutson, D. W., Buddemeier, R. W. and Smith, S. V. 1972 Coral chronometers: Seasonal growth bands in reef corals. Science 177: 270272.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.CrossRefGoogle Scholar
Kromer, B. and Spurk, M. 1998 Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP. Radiocarbon, this issue.CrossRefGoogle Scholar
Richards, D. A., Beck, W., Burr, G. S., Donahue, D. J., Smart, P. L. and Edwards, R. L. 1997 Calibration of radiocarbon timescale from 13 to 50 kA using 14C and 230Th ages of speleothems from the Bahamas. EOS Transactions 78(46): 389.Google Scholar
Stuiver, M., Long, A. and Kra, R. S., eds. 1993 Calibration 1993. Radiocarbon 35(1): 1244.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Taylor, F. W., Frohlich, C., Lecolle, J. and Strecker, M. 1987 Analysis of partially emerged corals and reef terraces in the central Vanuatu arc: Comparison of contemporary coseismic and nonseismic with Quaternary vertical movements. Journal of Geophysical Research 92: 49054933.Google Scholar
Tuniz, C., Fink, D., Hotchkis, M. A. C., Jacobsen, G. E., Lawson, E. M., Smith, A. M. and Hua, Q. 1997 Research and measurement program at the ANTARES AMS facility. Nuclear Istruments and Methods in Physics Research B123: 7378.CrossRefGoogle Scholar
Vogel, J. C., and Kronfeld, J. 1997 Calibration of radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1): 2732.Google Scholar
Wohlfarth, B. 1996 The chronology of the Last Termination: A review of radiocarbon-dated, high-resolution terrestrial stratigraphies. Quaternary Science Reviews 15: 267284.Google Scholar
Wohlfarth, B., Björck, S., and Possnert, G. 1995 The Swedish Time Scale: A potential calibration tool for the radiocarbon time scale during the Late Weichselian. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 347359.CrossRefGoogle Scholar