Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T17:06:40.912Z Has data issue: false hasContentIssue false

High-Resolution Age-Depth Model of a Peat Bog in Poland as an Important Basis for Paleoenvironmental Studies

Published online by Cambridge University Press:  26 July 2016

B Fiałkiewicz-Kozieł*
Affiliation:
Department of Biogeography and Paleoecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
P Kołaczek
Affiliation:
Department of Biogeography and Paleoecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
N Piotrowska
Affiliation:
Department of Radioisotopes, Institute of Physics – Centre for Science and Education, Silesian University of Technology, GADAM Centre of Excellence, Krzywoustego 2, 44-100 Gliwice, Poland
A Michczyński
Affiliation:
Department of Radioisotopes, Institute of Physics – Centre for Science and Education, Silesian University of Technology, GADAM Centre of Excellence, Krzywoustego 2, 44-100 Gliwice, Poland
E Łokas
Affiliation:
H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
P Wachniew
Affiliation:
AGH – University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
M Woszczyk
Affiliation:
Department of Quaternary Geology & Paleogeography, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań, Poland
B Sensuła
Affiliation:
Department of Radioisotopes, Institute of Physics – Centre for Science and Education, Silesian University of Technology, GADAM Centre of Excellence, Krzywoustego 2, 44-100 Gliwice, Poland
*
2. Corresponding author. Email: [email protected].

Abstract

This article focuses on constructing a high-resolution age-depth model for the Puścizna Mała peat bog located in Orawa-Nowy Targ Basin (S Poland). The chronology was established on the basis of both 210Pb and 14C measurements, and further confirmed by pollen diagrams and the peat bulk composition (density, ash content, and measurements of C, N, S). The 137Cs profile revealed significant downward migration of this radionuclide and was not suitable for geochronological interpretation. The peat profile in southern Poland records almost 2000 yr of paleoecological and geochemical changes. Major historical events linked to anthropogenic and climatic changes are recorded in the investigated proxies, which confirm the reliability of the age-depth model. Specifically, the Roman period, Migration period, Medieval times, as well as the Industrial Revolution are reflected in the palynology and bulk composition of the peat. However, dating results obtained for the core segment between 22–45 cm are problematic when confronted with other analyses. The highest peat accumulation rate of 2 mm yr-1 (AD 1300–1400 according to the age-depth model) is not compatible with the section of the highest peat decomposition revealed by lithological description. Moreover, the onset of a drastic decline of forests reflected in the palynological data and dated to AD 1280–1340 (40 cm) is difficult to explain in the light of historical data. Therefore, the lithology, bulk density, and pollen were used to validate the obtained age-depth model. External forcing factors on the peat formation process may be indicated, including agricultural activity, water-level fluctuations, and natural climatic factors, which paradoxically caused doubling of the obtained peat accumulation rate.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, PG. 2001. Chronostratigraphic techniques in recent sediments. In: Last, WM, Smol, JP, editors. Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological Techniques. Dordrecht: Kluwer Academic Publishers, p 171203.Google Scholar
Blaauw, M, Christen, A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):118.Google Scholar
Blaauw, M, Christen, A. 2012. Bacon manual – v2.2 [WWW document], http://chrono.qub.ac.uk/blaauw/manualBacon_2.2.pdf.Google Scholar
Borgmark, A, Schoning, K. 2006. A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data. Journal of Quaternary Science 21(2):109–14.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Chagué-Goff, C, Fyfe, WC. 1996. Geochemical and petrographical characteristics of a domed bog, Nova Scotia: a modern analogue for temperate coal deposits. Organic Geochemistry 24(2):141–58.Google Scholar
Chambers, FM, van Geel, B, van der Linden, M. 2011. Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires and Peat 7(11). http://www.mires-and-peat.net/map07/map_07_11.pdf.Google Scholar
Chłopek, K, Tokarska-Guzik, B. 2006. Pyłek ambrozji (Ambrosia) w aeroplanktonie. Górnego Śląska. Acta Agrobotanica 59:335–45. In Polish.Google Scholar
Clymo, RS, Mackay, D. 1987. Upwash and down wash of pollen and spores in the unsaturated surface layers of Sphagnum-dominated peat. New Phytologist 105(1):175–83.Google Scholar
Collins, R. 1999. Early Medieval Europe. 300–1000. 2nd edition. Basingstoke: Macmillan.CrossRefGoogle Scholar
Csontos, P, Vitalos, M, Barina, Z, Kiss, L. 2010. Early distribution and spread of Ambrosia artemisiifolia in Central and Eastern Europe. Botanica Helvetica 120(1):75–8.Google Scholar
De Vleeschouwer, F, Piotrowska, N, Sikorski, J, Pawlyta, J, Cheburkin, A, Le Roux, G, Lamentowicz, M, Fagel, N, Mauquoy, D. 2009. Multiproxy evidence of Little Ice Age palaeoenvironmental changes in a peat bog from northern Poland. The Holocene 19(4):625–37.CrossRefGoogle Scholar
Dreßler, M, Selig, U, Dörfler, W, Adler, S, Schubert, H, Hübener, T. 2006. Environmental changes and the Migration period in northern Germany as reflected in the sediments of Lake Dudinghausen. Quaternary Research 66(1):2537.Google Scholar
Dudová, L, Hájková, P, Buchtová, H, Opravilová, V. 2013. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. The Holocene 23(2):230–42.CrossRefGoogle Scholar
Fiałkiewicz-Koziełtrok;, B, Smieja-Król, B, Palowski, B. 2011. Heavy metal accumulation in two peat bogs from Southern Poland. Studia Quaternaria 28:1724.Google Scholar
Gaca, P, Romankiewicz, E, Mietelski, JW, Grabowska, S, Kubica, B. 2006. Radionuclides in two raised peat profiles collected from the Kościeliska Valley in the Tatra Mountains. Journal of Radioanalytical and Nuclear Chemistry 267:443–8.Google Scholar
Gąsiorowski, H. 2006. Corn (11) The history of corn on the world and in Poland. Przegląd zbożowo-młynarski 12. In Polish.Google Scholar
Geary, P. 2002. The Myth of Nations. The Medieval Origins of Europe. Princeton: Princeton University Press.Google Scholar
Gerdol, R, Degeto, S, Mazzotta, D, Vecchiati, G. 1994. The vertical distribution of the 137Cs derived from Chernobyl fall out in the uppermost Sphagnum layer of two peatlands in the southern Alps (Italy). Water Air Soil Pollution 75(1):93106.CrossRefGoogle Scholar
Hájková, P, Grootjans, A, Lamentowicz, M, Rybníčková, E, Madaras, M, Opravilová, V, Michaelis, D, Hájek, M, Joosten, H, Wolejko, L. 2012. How a Sphagnum fuscum-dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring-fed mire. Journal of Quaternary Science 27(3):233–43.Google Scholar
Heiri, O, Lotter, AF, Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1):101–10.Google Scholar
Holynska, B, Ostachowicz, B, Ostachowicz, J, Samek, L, Wachniew, P, Obidowicz, A, Wobrauschek, P, Streli, C, Halmetschlager, G. 1998. Characterisation of 210Pb dated peat core by various X-ray fluorescence techniques. Science of the Total Environment 218(2–3):239–48.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.Google Scholar
Jankovská, V. 1988. A reconstruction of the Late-Glacial and Early-Holocene evolution of forest vegetation in the Poprad basin, Czechoslovakia. Folia Geobotanica and Phytotaxonomica 23:303–20.Google Scholar
Jost, H. 2004. History of Mining and Metallurgy in the Tatra Mountains. Zakopane: Towarzystwo Muzeum Tatrzañskiego. In Polish with English summary.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B. 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14(10):959–66.CrossRefGoogle Scholar
Kołaczek, P, Fiałkiewicz-Kozieł, B, Karpińska-Kołczek, M, Gałka, M. 2010. The last two millennia of vegetation development and human activity in the Orawa-Nowy Targ Basin (south-eastern Poland). Acta Palaeobotanica 50(2):133–48.Google Scholar
Kowanetz, L. 1998. On the method of determining the climatic water balance in mountainous areas with an example from the Polish Carpathians. Prace Geograficzne Instytutu Geografii Uniwersytetu Jagiellońskiego 105:137–64.Google Scholar
Łajczak, A. 2006. The Orawsko–Nowotarskie Peatlands. Development, Anthropogenic Degradation, Restoration and Selected Problems of Protection. Kraków: IB PAN. In Polish with English summary.Google Scholar
Łajczak, A. 2007. Natura 2000 in Poland, Area PLH120016, The Orawsko-Podhalańskie Peatlands. Kraków: IB PAN.Google Scholar
Lamentowicz, M, Milecka, K, Gałka, M, Cedro, A, Pawlyta, J, Lamentowicz, L, Piotrowska, N, van der Knaap, W. 2009. Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macrofossils, pollen, and tree rings of pine. Boreas 38(2):214–29.Google Scholar
Le Roux, G, Marshall, WA. 2011. Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides. Mires and Peat 7. http://www.mires-and-peat.net/map07/map_07_08.pdf.Google Scholar
Limpens, J, Berendse, F, Blodau, C, Canadell, JG, Freeman, C, Holden, J, Roulet, N, Rydin, H, Schaepman-Strub, G. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1379–419.CrossRefGoogle Scholar
López-Buendia, AM, Whateley, MKG, Bastida, J, Urquiola, MM. 2007. Origins of mineral matter in peat marsh and peat bog deposits, Spain. International Journal of Coal Geology 71(2–3):246–62.Google Scholar
Lubicz-Niezabitowski, E. 1922. Wysokie torfowiska Podhala i konieczność ich ochrony. Ochrona Przyrody 3:2634. In Polish.Google Scholar
Malmer, N, Holm, E. 1984. Variations in the C/N-quotient of peat in relation to decomposition rate and age determination with 210Pb. Oikos 43(2):171–82.CrossRefGoogle Scholar
Mandernack, KW, Lynch, L, Krouse, HR, Morgan, MD. 2000. Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry. Geochimica et Cosmochimica Acta 64(23):3949–64.Google Scholar
Margielewski, W, Michczyński, A, Obidowicz, A. 2010. Records of the Middle- and Late Holocene palaeoenvironmental changes in the Pcim-Sucha Landslide peat bogs (Beskid Makowski Mts., Polish Outer Carpathians). Geochronometria 35(1):1123.Google Scholar
Margielewski, W, Kołaczek, P, Michczyński, A, Obidowicz, A, Pazdur, A. 2011. Record of the Meso- and Neoholocene palaeoenvironmental changes in the Jesionowa landslide peatbog (Beskid Sądecki, Mts. Polish Outer Carpathians). Geochronometria 38(2):138–54.Google Scholar
Matisoff, G, Ketterer, ME, Rosen, K, Mietelski, JW, Vitko, LF, Persson, H, Łokas, E. 2011. Downward migration of Chernobyl-derived radionuclides in soils in Poland and Sweden. Applied Geochemistry 26(1):105–15.Google Scholar
Mauquoy, D, Engelkes, T, Groot, MHM, Markesteijn, F, Oudejans, MG, van der Plicht, J, van Geel, B. 2002. High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology 186(3–4):275310.Google Scholar
Michczyński, A. 2011. Tworzenie chronologii bezwzględnych na podstawie datowania metodą radiowęglową (Absolute chronologies constructed on the basis of radiocarbon dating). Gliwice: Wydawnictwo Politechniki Śląskiej. In Polish.Google Scholar
Michczyński, A, Kołaczek, P, Margielewski, P, Michczyńska, DJ, Obidowicz, A. 2013. Radiocarbon age-depth modeling prevents misinterpretation of past vegetation dynamics: case study Wierchomla mire (Polish Outer Carpathians). Radiocarbon 55(2–3):1724–34.Google Scholar
Moore, T, Blodau, C, Turunen, J, Roulet, N, Richard, PJ. 2004. Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Global Change Biology 11(2):356–67.Google Scholar
Noryśkiewicz, A. 2004. Vegetation and settlement history in the area of Lake Zawada in the north-eastern part of the Świecie District (northern Poland). Acta Palaeobotanica 44(2):195215.Google Scholar
Novák, M, Adamova, M, Wieder, RK, Bottrell, SH. 2005. Sulfur mobility in peat. Applied Geochemistry 20(4):673–81.CrossRefGoogle Scholar
Obidowicz, A. 1990. Eine Pollenanalytische und Moorkundliche Studie zur Vegetationsgeschichte des Podhale-Gebietes (West-Karpaten). Acta Palaeobotanica 30(1–2):147219.Google Scholar
Oldfield, F, Richardson, N, Appleby, PG. 1995. Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance The Holocene 5(2):141–8.CrossRefGoogle Scholar
Pazdur, A, Fogtman, M, Michczyński, A, Pawlyta, J. 2003. Precision of 14C dating in Gliwice Radiocarbon Laboratory. FIRI programme. Geochronometria 22(1):2740.Google Scholar
Piliposian, GT, Appleby, PG. 2003. A simple model of the origin and transport of 222Rn and 210Pb in the atmosphere. Continuum Mechanics and Thermodynamics 15(5):503–18.CrossRefGoogle Scholar
Piotrowska, N, Blaauw, M, Mauquoy, D, Chambers, FM. 2011. Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires and Peat 7. http://www.mires-and-peat.net/map07/map_07_10.pdf.Google Scholar
Ralska-Jasiewiczowa, M, Nalepka, D, Goslar, T. 2003. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Vegetation History and Archaeobotany 12(4):233–47.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Rösch, M, Fischer, E. 2000. A radiocarbon dated Holocene pollen profile from the Banat mountains (Southwestern Carpathians, Romania). Flora 195(3):277–86.Google Scholar
Rosén, K, Vinichuk, M, Johanson, KJ. 2009. 137Cs in a raised bog in central Sweden. Journal of Environmental Radioactivity 100(7):534–9.Google Scholar
Rybníček, K, Rybníčková, E. 1985. A palaecological reconstruction of precultural vegetation in the intermontane basins of the western Carpathians. Ecologia Mediterranea 11:2731.Google Scholar
Shand, CA, Cheshire, MV, Smith, S, Vidal, M, Rauret, G. 1994. Distribution of radiocaesium in organic soils. Journal of Environmental Radioactivity 23(3):285–90.Google Scholar
Shotyk, W. 1996. Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichments factors. Environmental Review 4(2):149–83.Google Scholar
Tantau, I, Reille, M, de Beaulieu, J-L, Farcas, S. 2006. Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): pollen analysis of two sequences from Avrig. Journal of Quaternary Science 21(1):4961.Google Scholar
Toney, JL, Anderson, RS. 2006. A postglacial palaeoecological record from the San Juan Mountains of Colorado USA: fire, climate and vegetation history. The Holocene 16(4):505–17.Google Scholar
Trajdos, TM. 1993. Dzieje i kultura Orawy. Kraków: Wydawnictwo “Secesja.” Google Scholar
Turetsky, MR, Manning, SW, Wieder, RW. 2004. Dating recent peat deposits. Wetlands 24(2):324–56.CrossRefGoogle Scholar
Turetsky, MR, Donahue, WF, Benscoter, BW. 2011. Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications 2:514, doi:10.1038/ncommsl523.Google Scholar
Wacnik, A. 1995. The vegetational history of local flora and evidences of human activities recorded in the pollen diagram from site Regetovka, northeast Slovakia. Acta Palaeobotanica 35(2):253–74.Google Scholar
Zolitschka, B, Behre, K-E, Schneider, J. 2006. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives – examples from the Bronze Age to the Migration period, Germany. Quaternary Science Reviews 22(1):81100.CrossRefGoogle Scholar