Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:29:26.509Z Has data issue: false hasContentIssue false

Half-Life Determination of 41Ca and Some Other Radioisotopes

Published online by Cambridge University Press:  18 July 2016

Walter Kutschera
Affiliation:
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
Irshad Ahmad
Affiliation:
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
Michael Paul
Affiliation:
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have performed a new determination of the half-life of 41Ca by measuring the specific activity of an enriched Ca material with known 41Ca abundance. We measured the activity via the 3.3-keV X-rays emitted in the electron capture decay of 41Ca, and the 41Ca abundance was measured by low-energy mass spectrometry. The result, t1/2 = (1.01 ± 0.10) × 105 yr, agrees with the recent ‘geological’ half-life of Klein et al., (1991), t1/2 = (1.03 ± 0.07) × 105 yr, and with the corrected value of Mabuchi et al. (1974), t1/2 = (1.13 ± 0.12) × 105 yr. We recommend the weighted mean of these three measurements, t1/2 = (1.04 ± 0.05) × 105 yr, as the most probable half-life of 41Ca. We also discuss the situation of the radioisotopes, 32Si, 44Ti, 79Se and 126Sn, whose half-lives, though still uncertain, are potentially interesting for future AMS studies and other applications.

Type
I. Sample Preparation and Measurement Techniques
Copyright
Copyright © The American Journal of Science 

References

Alburger, D. E. and Harbottle, G. 1990 Half-lives of 44Ti and 207Bi. Physical Review C41: 23202324.Google Scholar
Alburger, D. E., Harbottle, G. and Norton, E. F. 1986 Half-life of 32Si. Earth and Planetary Science Letters 78: 168176.Google Scholar
Barker, J., Day, J. P., Aitken, T. W., Charlesworth, T. R., Cunningham, R. C., Drumm, P. V., Lilley, J. S., Newton, G. W. A. and Smithson, M. J. 1990 Development of 26Al accelerator mass spectrometry for biological and toxicological applications. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the Fifth International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 540543.Google Scholar
Bhandari, N., Bonino, G., Callegari, E., Cini Castagnoli, G., Mathew, K. J., Padia, J. T. and Queirazza, G. 1989 The Torino H6 meteorite shower. Meteoritics 24: 2934.Google Scholar
Brown, F., Hanna, G. C. and Yaffe, L. 1953 The radioactive decay of 41Ca. Proceedings of the Royal Society of London 220: 203219.Google Scholar
Browne, E. and Firestone, R. B. 1986 Electron-capture subshell ratios. In Shirley, V. S., ed., Table of Radioactive Isotopes. New York, Wiley: C10C13.Google Scholar
Chevalier, R. A. 1992 Supernova 1987A at five years of age. Nature 355: 691696.Google Scholar
Clausen, H. B. 1973 Dating of polar ice by 32Si. Journal of Glaciology 12: 411415.Google Scholar
Clayton, D. D., Colgate, S. A. and Fishman, G. J. 1969 Gamma-ray lines from young supernova remnants. Astrophysical Journal 155: 7582.Google Scholar
Cohen, D. D. 1988 X-rays from an 241Am source and their relative intensities. Nuclear Instruments and Methods A267: 492498.CrossRefGoogle Scholar
Cumming, J. B. 1983 Assay of 32Si by liquid scintillation counting. Radiochemical and Radioanalytical Letters 58: 297306.Google Scholar
DeMaster, D. J. 1980 The half-life of 32Si determined from a varved gulf of California sediment core. Earth and Planetary Science Letters 48: 209217.CrossRefGoogle Scholar
Dropesky, B. J. and Orth, C. J. 1962 A summary of the decay of some fission product tin and antimony isotopes. Journal of Inorganic Nuclear Chemistry 24: 13011316.Google Scholar
Drouin, J. R. S. and Yaffe, L. 1962 The half-life of 41Ca. Canadian Journal of Chemistry 40: 833838.Google Scholar
Elmore, D., Anantaraman, N., Fulbright, H. W., Gove, H. E., Hans, H. S., Nishiizumi, K., Murrell, M. T. and Honda, M. 1980 Half-life of 32Si from tandem-accelerator mass spectrometry. Physical Review Letters 45: 589592.Google Scholar
Elmore, D., Bhattacharyya, M. H., Sacco-Gibson, N. and Peterson, D. P. 1990 Calcium-41 as a long-term biological tracer for bone resorption. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the Fifth International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 531535.Google Scholar
Fink, D., Klein, J. and Middleton, R. 1990 41Ca: Past, present and future. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the Fifth International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 572582.Google Scholar
Frekers, D., Henning, W., Kutschera, W., Rehm, K. E., Smither, R. K., Yntema, J. L., Santo, R., Stievano, B. and Trautmann, N. 1983 Half-life of 44Ti. Physical Review C28: 17561762.Google Scholar
Godwin, H. 1962 Half-life of radiocarbon. Nature 195: 984.Google Scholar
Henning, W., Bell, W. A., Billquist, P. J., Glagola, B. G., Kutschera, W., Liu, Z., Lucas, H. F., Paul, M., Rehm, K. E. and Yntema, J. L. 1987 Calcium-41 concentration in terrestrial materials: Prospects for dating Pleistocene samples. Science 236: 725727.Google Scholar
Hofmann, H. J., Bonani, G., Suter, M., Wölfli, W., Zimmermann, D. and von Gunten, H. R. 1990 A new determination of the half-life of 32Si. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the Fifth International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 544551.CrossRefGoogle Scholar
Klein, J., Fink, D., Middleton, R., Nishiizumi, K. and Arnold, J. 1991 Determination of the half-life of 41Ca from measurements of Antarctic meteorites. Earth and Planetary Science Letters 103: 7983.Google Scholar
Koide, M. and Goldberg, E. D. 1985 Determination of 99Tc, 63Ni and 121m+126Sn in the marine environment. Journal of Environmental Radioactivity 2: 261282.Google Scholar
Krause, M. O. 1979 Atomic radiative and radiation less yields for K and L shells. Journal of Physical and Chemical Reference Data 8: 307327.Google Scholar
Kutschera, W. 1990 Accelerator mass spectrometry: a versatile tool for research. In Bethge, K., Rauch, F. and Misaelides, P., eds., Proceedings of the First European Conference on Accelerators in Applied Research and Technology. Nuclear Instruments and Methods B50: 252261.Google Scholar
Kutschera, W., Ahmad, I., Billquist, P. J., Glagola, B. G., Furer, K., Pardo, R. C., Paul, M., Rehm, K. E., Slota, P. J. Jr., Taylor, R. E. and Yntema, J. L. 1989a Studies towards a method for radiocalcium dating of bones. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 311323.Google Scholar
Kutschera, W., Ahmad, I., Billquist, P. J., Glagola, B. G., Pardo, R. C., Paul, M., Rehm, K. E. and Yntema, J. L. 1989b Accelerator mass spectrometry at ATLAS. Nuclear Instruments and Methods B42: 101108.Google Scholar
Kutschera, W., Henning, W., Paul, M., Smither, R. K., Stephens, E. J., Yntema, J. L., Alburger, D. E., Cumming, J. B. and Harbottle, G. 1980 Measurement of the 32Si half-life via accelerator mass spectrometry. Physical Review Letters 45: 592596.Google Scholar
Mabuchi, H., Takahashi, H., Nakamura, Y., Notsu, K. and Hamaguchi, H. 1974 The half-life of 41Ca. Inorganic Nuclear Chemistry 36: 16871688.Google Scholar
Matz, S. M., Share, G. H., Leisung, M. D., Chupp, E. L., Vestrand, W. T., Purcell, W. R., Strickmann, M. S. and Reppin, C. 1988 Gamma-ray line emission from SN1987A. Nature 331: 416418.Google Scholar
Meirav, O., Sutton, R. A. L., Fink, D., Middleton, R., Klein, J., Walker, V. R., Halabe, A., Vetterli, D. and Johnson, R. R. 1990 Application of accelerator mass spectrometry in aluminum metabolic studies. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the Fifth International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 536539.Google Scholar
Middleton, R., Fink, D., Klein, J. and Sharma, P. 1989 41Ca concentrations in modern bone and their implication for dating. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 305310.Google Scholar
Moreland, P. E. Jr. and Heymann, D. 1965 The 44Ti half-life. Journal of Inorganic Nuclear Chemistry 27: 493496.Google Scholar
Parker, G. W., Creek, G. E., Hebert, G. M., Lantz, P. M. and Martin, W. J. 1949 Radiation and half-life of long-lived fission selenium. Oak Ridge National Laboratory Report ORNL-499: 45.Google Scholar
Patton, T. L. and Penrose, W. R. 1989 Fission product tin in sediments. Journal of Environmental Radioactivity 10: 201211.Google Scholar
Paul, M., Ahmad, I. and Kutschera, W. 1991 Half-life of 41Ca. Zeitschrift für Physik A340: 249254.Google Scholar
Paul, M., Glagola, B. G., Henning, W., Keller, J. G., Kutschera, W., Liu, Z. H., Rehm, K. E., Schneck, B. and Siemssen, R. H. 1989 Heavy ion separation with a gas-filled magnetic spectrograph. Nuclear Instruments and Methods A277: 418430.Google Scholar
Singh, B. and Viggars, D. A. 1982 Nuclear data sheets for A = 79. Nuclear Data Sheets 37: 393485.Google Scholar
Snyder, W. S., Cook, M. J., Nasset, E. S., Karhausen, L. R., Parry Howells, G. and Tipton, I. H. 1975 Report of the task group on reference Man. International Commission on Radiological Protection 23. Oxford, Pergamon Press: 290324.Google Scholar
Somayajulu, B. L. K., Rengarajan, R., Lal, D. and Craig, H. 1991 GEOSECS Pacific and Indian Ocean 32Si profiles. Earth and Planetary Science Letters 107: 197216.Google Scholar
Steinhof, A., Behr, K. H., Bruenle, A., Roeckl, E., Boaretto, E., Paul, M., Fink, D., Hollos, G. and Kutschera, W. 1989 Electromagnetic isotope enrichment for accelerator mass spectrometry of 41Ca. Nuclear Instruments and Methods B43: 7381.Google Scholar
Thomsen, M. S., Heinemeier, J., Hornshoj, P., Nielsen, H. L. and Rud, N. 1991 Half-life of 32Si measured via accelerator mass spectrometry. Nuclear Physics A534: 327338.Google Scholar
Walz, K. F. and Weiss, H. M. 1970 Messung der Halbwertszeiten von 60Co, 137Cs und 133Ba. Zeitschrift fuer Naturforschung 25a: 921927.CrossRefGoogle Scholar
Wing, J., Wahlgren, M. A., Stevens, C. M. and Orlandini, K. A. 1965 Carrier-free separation of titanium and half-life determination of 44Ti. Journal of Inorganic Nuclear Chemistry 27: 487491.Google Scholar