Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T00:17:05.070Z Has data issue: false hasContentIssue false

Geochronologic and Paleoclimatic Characterization of Quaternary Sediments in the Great Hungarian Plain

Published online by Cambridge University Press:  18 July 2016

Ede Hertelendi
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, Hungary
Pål Sümegi
Affiliation:
Department of Mineralogy and Geology, Kossuth Lajos University, H-4010 Debrecen, Hungary
Gyula Szöör
Affiliation:
Department of Mineralogy and Geology, Kossuth Lajos University, H-4010 Debrecen, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We reconstructed the climate of the Great Hungarian Plain between the years, 7–32 ka BP using a malacothermometer method. The reconstruction is based on seven Gastropoda taxa, for which optimal temperature and tolerance ranges have been determined. The temporal scales of the malacofaunal levels were calibrated with radiocarbon data. We compared our paleotemperature values with the temperature values of existing climatic curves and found the same climatic periods.

Type
IV. Paleoclimatology
Copyright
Copyright © The American Journal of Science 

References

Coope, R. G., Morgan, A. and Osborne, P. J. 1971 Fossil Coleoptera as indicators of climatic fluctuations during the last glaciation in Britain. Palaeogeography, Palaeoclimatology, Palaeoecology 10: 87101.CrossRefGoogle Scholar
Dobosi, V., Vörös, I., Krolopp, E., Szabó, J., Ringer, Å. and Schweitzer, F. 1983 An upper Paleolithic settlement in Pilismarót-Pálrét. Acta Archeologica Academiae Scientiarum Hungarical 35(3–4): 287311.Google Scholar
Heusser, C. J. 1973 Climatic records of the Last Ice Age for Pacific mid-latitudes in the Americas. Abstracts of the 9th INQUA Congress, Auckland, New Zealand: 150 p.Google Scholar
Hertelendi, E., Csongor, E., Záborszky, L., Molnár, J., Gál, J., Györffi, M. and Nagy, S. 1989 A counter system for high-precision 14C dating. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 399406.CrossRefGoogle Scholar
Járai-Komlódi, M. 1969 Quaternary climatic changes and vegetational history of the Great Hungarian Plain. Botanikai Közlemények 56(1): 4355.Google Scholar
Kordos, L. 1957 Change in the Holocene climate of Hungary reflected by the “vole thermometer” method. Földrajzi Közlemények 25(1–3): 222229.Google Scholar
Kretzoi, M. 1957 Wirbeltierfaunistische Aufgaben zur Quarterchronologie der Jankovic-Höhle. Folia Archeologica 9: 1621.Google Scholar
Skoflek, I. 1990 Plant remains from the Vértesszölös Lower Paleolithic. In Kretzoi, M. and Dobosi, T., eds., Vértesszölös Man, Site and Culture. Budapest, Akadémiai Kiadó: 550 p.Google Scholar
Sümegi, P. (ms.) 1989 Upper Pleistocene evolution history of the Hajdúság (Hungary) region on the basis of stratigraphical investigations. Ph.D. dissertation, Debrecen: 93 p.Google Scholar
Szöör, G. 1982 Fossil age determination by thermal analysis. Journal of Thermal Analysis 23: 8183.Google Scholar
Zagwijn, W. H. and Paepe, R. 1968 Die Stratigraphie der weichselzeitlichen Ablagerungen der Niederlande und Belgiens. Eiszeitalter und Gegenwart 19: 129146.Google Scholar