Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T09:46:44.388Z Has data issue: false hasContentIssue false

Geoarchaeological Study of Szálka and Vajda Kurgans (Great Hungarian Plain) Based on Radiocarbon and Geophysical Analyses

Published online by Cambridge University Press:  19 November 2018

Csaba Albert Tóth*
Affiliation:
Department of Physical Geography and Geoinformatics, University of Debrecen, 4032 Debrecen, Hungary
Zsolt Prónay
Affiliation:
Geological and Geophysical Institute of Hungary, 1143 Budapest, Hungary
Mihály Braun
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), ATOMKI, 4026 Debrecen, Hungary
Péter Nagy
Affiliation:
MinGeo Ltd., 1142 Budapest, Hungary
Mihály Pethe
Affiliation:
Gyula Forster National Centre for Cultural Heritage Management, 1014 Budapest, Hungary
Péter Tildy
Affiliation:
Geological and Geophysical Institute of Hungary, 1143 Budapest, Hungary
Botond Buró
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), ATOMKI, 4026 Debrecen, Hungary
Titanilla Kertész
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), ATOMKI, 4026 Debrecen, Hungary
Richard W McIntosh
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, 4032 Debrecen, Hungary
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), ATOMKI, 4026 Debrecen, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

Two archaeologically unexplored mounds were studied in the area of the central Great Hungarian Plain. The age of the construction of the mounds was clarified on the basis of radiocarbon (14C) age determination of buried soil layers. Different, later-building phases of the mounds were detected by pedological and geo-electric analyses of the human-made layers. The age of the buried soils was corrected for the reservoir age of the recent soils found in the surroundings of the mounds. Radiocarbon ages of the carbon extracted from the soils at temperatures 400 and 800ºC were almost completely the same. Based on the calibrated ages of cal BP 4830–5270 (Szálka Mound) and cal BP 4880–5290 (Vajda Mound) of the buried soil layers, the identified kurgans were built by people of the Copper Age Yamnaya Culture. On the basis of the pedological and geophysical analysis of the layers, Szálka Mound and Vajda Mound were built in two and in three phases respectively from the chernozem-like humus-rich topsoil layers of the surrounding area. The former shallow quarry sites have been almost completely filled and cannot be identified at the foot of the mounds even using geodetic methods.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Alexandrovskiy, AL. 1996. Natural environment as seen in soil. Eurasian Soil Science 29(3):277287.Google Scholar
Alexandrovskiy, AL, van der Plicht, J, Belinskiy, AB, Khokhlova, OS. 2001. Chronology of soil evolution and climatic changes in the dry steppe zone of the Northern Caucasus, Russia, during the 3rd millennium BC. Radiocarbon 38(2):629635.Google Scholar
Barczi, A. 2016. Kunhalmok eltemetett talajainak vizsgálata. Gödöllő: Szent István Egyetemi Kiadó. 179 p.Google Scholar
Barczi, A, Joó, K, Pető, Á, Bucsi, T. 2006. Survey of the buried paleosol under the Lyukas Mound in Hungary. Eurasian Soil Science 39(1):133140.Google Scholar
Barczi, A, Golyeva, AA, Pető, Á. 2007. Palaeoenvironmental reconstruction of Hungarian kurgans on the basis of the examination of palaeosols and phytolith analysis. Quaternary International 193(2009):4960.Google Scholar
Bede, Á. 2014. A tiszántúli halmok régészeti geológiai és környezettörténeti szempontú vizsgálati lehetőségei [PhD dissertation]. Szeged: Szegedi Tudományegyetem.Google Scholar
Bede, Á, Csathó, AI, Czukor, P, Sümegi, P. 2015. The landscape historical study of the Ecse-halom kurgan in Hortobágy (Hungary). Tájökológiai Lapok 13(1):169184.Google Scholar
Bóna, I. 1992. Bronzezeitliche Tell-Kulturen in Ungarn. In: Meier-Arendt W, editor. Bronzezeit in Ungarn. Forschungen in Tell-Siedlungen an Donau und Theiss. Museum für Vor- und Frühgeschichte, Frankfurt am Main. p 939.Google Scholar
Chaney, RC, Slonim, SM, Slonim, SS. 1982. Determination of calcium carbonate content in soils. In: Chaney RC, Demars KR, editors. Geotechnical Properties, Behavior, and Performance of Calcareous Soils. Philadelphia-Baltimore: American Society for Testing and Material. p 316.Google Scholar
Csányi, M. 1999. A kunhalmok régészeti értékei. In: Tóth A, editor. Kunhalmok. Kisújszállás. p 41.Google Scholar
Dani, J, Horváth, T. 2012. Őskori kurgánok a magyar Alföldön. A Gödörsíros (Jamnaja) entitás magyarországi kutatása az elmúlt 30 év során. Áttekintés és revízió. Budapest: Archaeolingua Alapítvány. 215 p.Google Scholar
Deák, B, Tóthmérész, B, Valkó, O, Sudnik-Wójcikowska, B, Moysiyenko, II, Bragina, TM, Apostolova, I, Dembicz, I, Bykov, NI, Török, P. 2016. Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodiversity and Conservation 25(12):24732490.Google Scholar
Demkin, VA, Kashirskaya, NN, Demkina, TS, Khomutova, TE, El’tsov, MV. 2008. Paleosol studies of burial mounds in the Ilovlya River valley (the Privolzhskaya Upland). Eurasian Soil Science 41:115127.Google Scholar
Ecsedy, I. 1979. The People of the Pit-Grave Kurgans in Eastern Hungary. Fontes Archaeologici Hungaricae. Budapest: Akadémiai Kiadó. p 1–85.Google Scholar
Horváth, T. 2011. Hajdúnánás-Tedej–Lyukas-halom – An interdisciplinary survey of a typical kurgan from the Great Hungarian Plain region: a case study. (The revision of the kurgans from the territory of Hungary). In: Pető Á, Barczi A, editors. Kurgan Studies. An Environmental and Archaeological Multiproxy Study of Burial Mounds in the Eurasian Steppe Zone. British Archaeological Reports International Series 2238. Oxford: Archaeopress. p 71132.Google Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, Gann, J, Hatheway, AL, Lange, TE, Lifton, NA. 2006. Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. Radioactivity in the Environment 8:323.Google Scholar
Molnár, M, Joó, K, Barczi, A, Szántó, Zs, Futó, I, Palcsu, L, Rinyu, L. 2004. Dating of total soil organic matter used in kurgan studies. Radiocarbon 46(1):413419.Google Scholar
Molnár, M and Svingor, É. 2011. An interpretation of the soil 14C results of the Hajdúnánás–Tedej-Lyukas-halom kurgan. In: Pető Á, Barczi A, editors. Kurgan Studies. An Environmental and Archaeological Multiproxy Study of Burial Mounds in the Eurasian Steppe Zone. British Archaeological Reports International Series 2238. Oxford: Archaeopress. p 255258.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of the Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.Google Scholar
Morgunova, NL and Khokhlova, OS. 2013. Chronology and periodization of the Pit-Grave Culture in the region between the Volga and Ural rivers based on radiocarbon dating and paleopedological research. Radiocarbon 55(2–):12861296.Google Scholar
Pansu, M and Gautheyrou, J. 2006. Pipette Method after Robinson-Köhn or Andreasen. In: Pansu M, Gautheyrou J, editors. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Berlin-Heidelberg: Springer Verlag. p 3542.Google Scholar
Pessenda, LC, Gouveia, SE, Aravena, R. 2001. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 38(2):595601.Google Scholar
Pető, Á, Baklanov, S, Tóth, C, Tóth, A, Barczi, A. 2016. Data on the paleoecological and geoarchaeological examination of the Bronze Age mound known as Bán-halom. Agrokémia és Talajtan 65(2):207223.Google Scholar
Ponomareva, VV, Plotnikova, TA. 1980. Gumus i Pochvoobrazovanie (Humus and Pedogenesis).Leningrad: Nauka. p 6574.Google Scholar
Puszta, S. 1998 . A mágneses tér vizsgálata. Természet Világa 129(10):443444.Google Scholar
Raczky, P, Czajlik, Z, Marton, A, Holl, B, Puszta, S. 1997. GIS and the evaluation of rescue excavations along the M3 Motorway in Hungary. Porocilo 24:157170.Google Scholar
Raczky, P. 1991. Dombokká vált évszázadok. Bronzkori tell-kultúrák a Kárpát-medence szívében. Budapest-Szolnok: Pytheas. p 468.Google Scholar
Rassamakin, YY. 1999. The Eneolithic of the Black Sea Steppe: dynamics of cultural and economic development 4500–2300 BC. In: Levine M, Rassamakin Y, Kislenko A, Tatarintseva A, editors. Late Prehistoric Exploitation of the Eurasian Steppe. Cambridge: McDonald Institute Monographs. p 59183.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grotes, PM, Guildersn, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Tourney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294(1):270275.Google Scholar
Rowinska, A, Sudnik-Wójcikowska, B, Moysiyenko, II. 2010. Kurgans – cultural heritage in the anthropogenic landscape of the steppe and forest steppe zones through the eyes of an archaeologist and botanist. Wiad Bot 54:720.Google Scholar
Shishlina, NI, Zazovskaya, EP, van der Plicht, J, Hedges, REM, Sevastyanov, VS, Chichagova, OA. 2009. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian Steppe Bronze Age. Radiocarbon 51(2):481499.Google Scholar
Sudnik-Wójcikowska, B, Moysiyenko, II. 2012. Kurhany na ,,Dzikich Polach”- dziedzictwo kultury i ostoja ukrain ´skiego stepu. [Kurgans in the „Wild Field” – a cultural heritage and refugium of the Ukrainian steppe]. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego.Google Scholar
Tóth, CA, Pethe, M, Hatházi, Á. 2014. The application of earth science-based analyses on a twin-kurgan in Northern Hungary. Carpathian Journal of Earth and Environmental Sciences 9(1):1120.Google Scholar
Tóth, A, Tóth, CA. 2004. A kunhalom program általános tapasztalatai. In: Tóth A, editor. A kunhalmokról más szemmel. Alföldkutatásért Alapítvány, Hortobágyi Nemzeti Park Igazgatóság, Kisújszállás-Debrecen. p 171180.Google Scholar
Wang, Y, Amundson, R, Trumbore, S. 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45:282288.Google Scholar