Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T16:11:31.897Z Has data issue: false hasContentIssue false

Freshwater Reservoir Effect on Redating of Eurasian Steppe Cultures: First Results for Eneolithic and Early Bronze Age Northeast Kazakhstan

Published online by Cambridge University Press:  23 February 2016

Svetlana V Svyatko*
Affiliation:
14CHRONO Centre for Climate, the Environment, and Chronology, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, UK
Ilya V Mertz
Affiliation:
A. Kh. Margulan Centre for Archaeological Research, Pavlodar State University n.a. S. Toraigyrov, 64 Lomov st., room 102, Pavlodar, 140008, Kazakhstan
Paula J Reimer
Affiliation:
14CHRONO Centre for Climate, the Environment, and Chronology, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, UK
*
2 Corresponding author. Email: [email protected].

Abstract

Freshwater reservoir effects (FRE) can cause problems when radiocarbon dating human skeletal material from the Eurasian steppe. This article presents the first results of research into the extent of the FRE in the sites of Borly 4 (Eneolithic) and Shauke 1 and 8b (Early Bronze Age), northeastern Kazakhstan. Accelerator mass spectrometry (AMS) 14C dating and stable isotope (δ13C, δ15N) analysis of associated groups of samples (32 samples, 11 groups in total) demonstrate the following: (a) the diet of the humans and fauna analyzed was based on the C3 foodchain with no evidence of a C4 plant (such as millet) contribution; aquatic resources apparently were a continuous dietary feature for the humans; (b) the first 14C dates obtained for the Upper and Middle Irtysh River region attribute the Eneolithic period of the area to the 34th to 30th centuries BC, and the Early Bronze Age to the 25th to 20th centuries BC, with a ~450-yr hiatus between the two periods; (c) the maximum fish-herbivore freshwater reservoir offset observed equals 301 ± 47 14C yr. As such, 14C dates from aquatic and human samples from the area need to be interpreted with caution as they are likely to be affected by the offset (i.e. appear older). The article also discusses the effect of a sodium hydroxide (NaOH) wash on δ13C, δ15N, C:Natomic levels and collagen yields of the bone samples. Our results indicate a minor but significant effect of NaOH treatment only on C:Natomic ratios of the samples.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, AY, Bokovenko, NA, Vasilyev, SS, Dergachev, VA, Zaitseva, G. 2005. Evraziya v skifskuyu epohu: radiouglerodnaya i arheologicheskaya hronologiya. St. Petersburg: THESA. In Russian.Google Scholar
Ambrose, SH. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18(3):293317.Google Scholar
Anthony, DW. 2007. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton: Princeton University Press.Google Scholar
Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532–47.Google Scholar
Beckwith, CI. 2009. Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present. Princeton: Princeton University Press.Google Scholar
Berglund, BE, Håkansson, S, Lagerlund, E. 1976. Radiocarbon dated mammoth (Mammuthus primigenius Blummenbach) finds in South Sweden. Boreas 5(3):178–91.Google Scholar
Bocherens, H, Drucker, D. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13(1–2):4653.Google Scholar
Bogaard, A, Fraser, R, Heaton, THE, Wallace, M, Vaiglova, P, Charles, M, Jones, G, Evershed, RP, Styring, AK, Andersen, NH, Arbogast, R-M, Bartosiewicz, L, Gardeisen, A, Kanstrup, M, Maier, U, Marinova, E, Ninov, L, Schafer, M, Stephan, E. 2013. Crop manuring and intensive land management by Europe's first farmers. Proceedings of the National Academy of Sciences of the USA 110(31):12,58994.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for ams radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Pettitt, PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453–60.CrossRefGoogle Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Bartosiewicz, L, Pettitt, PB. 2002. Problems of dating human bones from the Iron Gates. Antiquity 76(291):7785.Google Scholar
Culleton, BJ. 2006. Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California. Journal of Archaeological Science 33(9):1331–9.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–9.Google Scholar
DeNiro, MJ, Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45(3):341–51.Google Scholar
Esenov, SE. 1970. Atlas Severnogo Kazahstana: Kokcheiavskaya, Kustanaiskaya, Pavlodarskaya, Severo-Kazahstanskaya, Celinogradskaya oblasti. Moscow: Glavnoye upravleniye geodezii i kartografii. In Russian.Google Scholar
Fernandes, R, Rinne, C, Nadeau, M-J, Grootes, P. 2014. Towards the use of radiocarbon as a dietary proxy: establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology. DOI 10.1179/1749631414Y.0000000034.Google Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449–66.CrossRefGoogle Scholar
Frachetti, MD, Spengler, RN, Fritz, GJ, Mar'yashev, AN. 2010. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84(326):9931010.Google Scholar
Francey, RJ, Allison, CE, Etheridge, DM, Trudinger, CM, Enting, IG, Leuenberger, M, Langenfelds, RL, Michel, E, Steele, LP. 1999. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51(2):170–93.Google Scholar
Gaiduchenko, LL. 2013. Drevneishie formy krupnogo rogatogo skota Uralo-Kazahstanskih stepei. [The oldest forms of cattle in the Ural-Kazakh steppes.] In: Tahirov, A, Ivanova, ND, editors. Etnicheskiye Vzaimodeistviya na Yuzhnom Urale. Chelyabinsk: Rifey. p 261–8. In Russian.Google Scholar
Gaiduchenko, LL. 2014. Vremya poyavleniya i osobennosti drevneishego stepnogo zhivotnovodstva v Kazahstane. In: Habdulina, MK, editor. Dialog Kultur Evrazii v Arkheologii Kazakhstana. Astana: Saryarka. p 211–4. In Russian.Google Scholar
Gaiduchenko, LL, Kiryushin, KY. 2013. Osteologicheskii kompleks ranneeneoliticheskogo poseleniya Novoil'inka 6 v Kulunde. Trudy filiala Instituta arheologii im. A.H. Margulana v g. Astana. Volume 2. p 212–20. In Russian.Google Scholar
Gaiduchenko, LL, Merz, VK. 2012. Osteologicheskii kompleks poseleniya Borly. In: Zaibert, VF, editor. Margulanovskie Chteniya 2012: Materialy ezhegodnoi nauchnoprakticheskoi konferencii. Astana: Branch of Institute of Archaeology n.a. A. Kh. Margulan. p 27–9. In Russian.Google Scholar
Goodfriend, G, Flessa, K. 1997. Radiocarbon reservoir ages in the Gulf of California: roles of upwelling and flow from the Colorado River. Radiocarbon 39(2):139–48.Google Scholar
Görsdorf, J, Parzinger, H, Nagler, A. 2001. New radiocarbon dates of the North Asian steppe zone and its consequences for the chronology. Radiocarbon 43(2B):1115–20.Google Scholar
Grushin, SP. 2013. Kul'tura zhizneobespecheniya i proizvodstva naseleniya Stepnogo i Lesostepnogo Ob'Irtysh'ya vo vtoroi polovine III – pervoi chetverti II tys. do n.e. [unpublished DScD dissertation]. Barnaul: Altai State University Press. 56 p. In Russian.Google Scholar
Grushin, SP, Papin, DV, Pozdnyakova, OA, Tyurina, EA, Fedoruk, AS, Havrin, SV. 2009. Altai v sisteme metallurgicheskih provincii eneolita i bronzovogo veka. Barnaul: Izdatelstvo Altaiskogo University. In Russian.Google Scholar
Hanks, BK, Epimakhov, AV, Renfrew, AC. 2007. Towards a refined chronology for the Bronze Age of the southern Urals, Russia. Antiquity 81(312):353–67.Google Scholar
Hedges, REM, Reynard, LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34(8):1240–51.Google Scholar
Higham, T, Warren, R, Belinskij, A, Härke, H, Wood, R. 2010. Radiocarvon dating, stable isotope analysis, and diet-derived offsets in 14C ages from the Klin-Yar site, Russian North Caucasus. Radiocarbon 52(2–3):653–70.Google Scholar
Hoefs, J. 2009. Stable Isotope Geochemistry. Berlin: Springer.Google Scholar
Ingram, BL, Southon, JR. 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):571–82.Google Scholar
Jørkov, MLS, Heinemeier, J, Lynnerup, N. 2007. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. Journal of Archaeological Science 34(11):1824–9.CrossRefGoogle Scholar
Kaliyeva, SS, Logvin, VN. 1997. Skotovody Turgaya v tret'em tysyacheletii do nashei ery. Kostanai. In Russian.Google Scholar
Katzenberg, MA, Weber, A. 1999. Stable isotope ecology and palaeodiet in the Lake Baikal region of Siberia. Journal of Archaeological Science 26(6):651–9.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):1306–16.CrossRefGoogle Scholar
Kiryushin, YuF. 2002. Eneolit i rannyaya bronza yuga Zapadnoi Sibiri. Barnaul: Altai State University Press. In Russian.Google Scholar
Kovalev, AA. 2009. Chemurchekskii fenomen kak produkt evolyucii megalitov Atlanticheskogo poberezh'ya Francii (po materialam radiouglerodnogo datirovaniya megaliticheskih grobnic zapadnoi Evropy i pamyatnikov chemurchekskoi kul'tury). In: Kiryushin, YuF, Tishkin, AA, editors. Rol Estestvenno-Nauchnyh Metodov d Arkheologisheskih Issledovaniyah. Barnaul: Altai State University Press. p 130–40. In Russian.Google Scholar
Kuzmina, EE. 2008. The Prehistory of the Silk Road. Philadelphia: University of Pennsylvania Press.CrossRefGoogle Scholar
Lanting, J, Aerts-Bijma, A, van der Plicht, J. 2001. Dating cremated bone. Radiocarbon 43(2A):249–54.Google Scholar
Levine, MA, Kislenko, AM. 2002. New Eneolithic and Early Bronze Age radiocarbon dates for North Kazakhstan and South Siberia. In: Boyle, K, Renfrew, C, Levine, M, editors. Interaction: East and West in Eurasia. Cambridge: McDonald Institute for Archaeological Research. p 131–4.Google Scholar
Liden, K, Takahashi, C, Nelson, DE. 1995. The effects of lipids in stable carbon isotope analysis and the effects of NaOH treatment on the composition of extracted bone collagen. Journal of Archaeological Science 22(2):321–6.Google Scholar
Lightfoot, E, Motuzaite-Matuzeviciute, G, O'Connell, TC, Kukushkin, IA, Loman, V, Varfolomeev, V, Liu, X, Jones, MK. 2014. How ‘pastoral’ is pastoralism? Dietary diversity in Bronze Age communities in the central Kazakhstan Steppes. Archaeometry 57(S1):232–49.Google Scholar
Lillie, M, Budd, C, Potekhina, I, Hedges, R. 2009. The radiocarbon reservoir effect: new evidence from the cemeteries of the middle and lower Dnieper basin, Ukraine. Journal of Archaeological Science 36(2):256–64.Google Scholar
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Climate of the Past 9(3):1015–28.Google Scholar
Mair, VH, editor. 2006. Contact and Exchange in the Ancient World. Honolulu: University of Hawaii Press.Google Scholar
Makarewicz, C, Tuross, N. 2006. Foddering by Mongolian pastoralists is recorded in the stable carbon (δ13C) and nitrogen (δ15N) isotopes of caprine dentinal collagen. Journal of Archaeological Science 33(6):862–70.Google Scholar
McCutchan, JH, Lewis, WM, Kendall, C, McGrath, CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378–90.Google Scholar
Merz, VK. 2008. Periodizaciya golocenovyh kompleksov Severnogo i Central'nogo Kazahstana po materialam mnogosloinoi stoyanki Shiderty 3 [PhD dissertation synopsis]. Kemerovo: Pavlodar State University n.a. S. Toraygyrov. 26 p. In Russian.Google Scholar
Merz, VK, Merz, IV. 2010. Pogrebeniya “yamnogo” tipa Vostochnogo I Severo-Vostochnogo Kazakhstana (k postanovke problemy). In: Stepanova, NF, Polyakov, AV, Tur, SS, Shulga, PI, editors. Afanasyevskiy Sbornik. Barnaul: Azbuka. p 134–44. In Russian.Google Scholar
Mook, WG, Waterbolk, HT. 1985. Radiocarbon Dating. European Science Foundation Handbooks for Archaeologists No 3. Strasbourg: European Science Foundation.Google Scholar
Morgunova, NL. 2014. Priural'skaya gruppa pamyatnikov v sisteme Volzhsko-Ural'skogo varianta yamnoi kul'turno-istoricheskoi oblasti. Orenburg: OGPU Press. In Russian.Google Scholar
Murphy, EM, Schulting, R, Beer, N, Chistov, ZY, Kasparov, A, Pshenitsyna, M. 2013. Iron Age pastoral nomadism and agriculture in the Eastern Eurasian Steppe: implications from dental palaeopathology and stable carbon and nitrogen isotopes. Journal of Archaeological Science 40(5):2547–60.Google Scholar
Nomokonova, T, Losey, RJ, Goriunova, OI, Weber, AW. 2013. A freshwater old carbon offset in Lake Baikal, Siberia and problems with the radiocarbon dating of archaeological sediments: evidence from the Sagan-Zaba II site. Quaternary International 290-291 :110–25.Google Scholar
O'Connell, TC, Levine, MA, Hedges, REM. 2003. The importance of fish in the diet of central Eurasian peoples from the Mesolithic to the Early Iron Age. In: Levine, MA, Renfrew, AC, Boyle, K, editors. Prehistoric Steppe Adaptation and the Horse. Cambridge: McDonald Institute for Archaeological Research. p 253–68.Google Scholar
O'Connell, TC, Kneale, CJ, Tasevska, N, Kuhnle, GGC. 2012. The diet-body offset in human nitrogen isotopic values: a controlled dietary study. American Journal of Physical Anthropology 149(3):426–34.Google Scholar
Olsen, J, Heinemeier, J, Lübke, H, Lüth, F, Terberger, T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic NE German cemetery. Radiocarbon 52(2-3):635–44.Google Scholar
Polyakov, AV. 2010. Radiouglerodniye daty Afanasyevskoi kultury. In: Stepanova, NF, Polyakov, AV, Tur, SS, Shulga, PI, editors. Afanasyevskiy Sbornik. Barnaul: Azbuka. p 158–71. In Russian.Google Scholar
Privat, KL, Schneeweiss, J, Benecke, N. 2005. Economy and diet at the Late Bronze Age/Iron Age site of Chicha: artefactual, archaeozoological and biochemical analyses. Eurasia Antiqua 11:419–48.Google Scholar
Pyankov, VI, Gunin, PD, Tsoog, S, Black, CC. 2000. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123(1):1531.CrossRefGoogle ScholarPubMed
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–87.Google Scholar
Richards, MP, Hedges, REM. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26(6):717–22.CrossRefGoogle Scholar
Schulting, R, Bronk Ramsey, C, Bazaliiskii, VI, Goriunova, OI, Weber, A. 2014. Freshwater reservoir offsets investigated through paired human-faunal 14C dating and stable carbon and nitrogen isotope analysis at Lake Baikal, Siberia. Radiocarbon 56(3):9911008.Google Scholar
Shishlina, NI, van der Plicht, J, Hedges, REM, Zazovskaya, EP, Sevastyanov, VS, Chichagova, OA. 2007. The Catacomb cultures of the north-west Caspian Steppe: 14C chronology, reservoir effect, and paleodiet. Radiocarbon 49(2):713–26.Google Scholar
Shishlina, NI, Zazovskaya, EP, van der Plicht, J, Hedges, REM, Sevastyanov, VS, Chichagova, OA. 2009. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian Steppe Bronze Age. Radiocarbon 51(2):481–99.Google Scholar
Shishlina, N, Zazovskaya, E, van der Plicht, J, Sevastyanov, EV. 2012. Isotopes, plants, and reservoir effects: case study from the Caspian Steppe Bronze Age. Radiocarbon 54(3–4):749–60.Google Scholar
Shishlina, N, Sevastyanov, V, Zazovskaya, E, van der Plicht, J. 2014. Reservoir effect of archaeological samples from Steppe Bronze Age cultures in southern Russia. Radiocarbon 56(2):767–78.Google Scholar
Slota, P, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):167–80.Google Scholar
Stöllner, T, Samašev, Z, Berdenov, S. 2013. Zinn und Kupfer aus dem Osten Kasachstans. Ergebnisse eines deutsch-kasachischen Projektes 2003–2008. Unbekanntes Kasachstan archäologie im Herzen Asiens. Bochum: Deutsches Bergbau-Museum Bochum.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Reimer, PJ, Reimer, RW. 2013. CALIB 7.0. [WWW program and documentation]. URL: http://radiocarbon.pa.qub.ac.uk/calib/calib.html.Google Scholar
Sveinbjörnsdóttir, Á, Heinemeier, J, Arnorsson, S. 1995. Origin of 14C in Icelandic groundwater. Radiocarbon 37(2):551–65.Google Scholar
Svyatko, SV, Mallory, JP, Murphy, EM, Polyakov, AV, Reimer, PJ, Schulting, RJ. 2009. New radiocarbon dates and a review of the chronology of prehistoric populations from the Minusinsk Basin, southern Siberia, Russia. Radiocarbon 51(1):243–73.Google Scholar
Uryvaev, VA, editor. 1959. Resursy poverhnostnyh vod raionov osvoeniya celinnyh i zalezhnyh zemel'. Pavlodarskaya oblast' Kazahskoi SSR. Vypusk 4. Leningrad: GIMIZ. In Russian.Google Scholar
van der Merwe, NJ, Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18(3):249–59.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687–95.Google Scholar
van Klinken, GJ, van der Plicht, H, Hedges, REM. 1994. Bond 13C/12C ratios reflect (palaeo-)climatic variations. Geophysical Research Letters 21(6):445–8.Google Scholar
Ventresca Miller, A, Usmanova, E, Logvin, V, Kalieva, S, Shevnina, I, Logvin, A, Kolbina, A, Suslov, A, Privat, K, Haas, K, Rosenmeier, M. 2014. Subsistence and social change in Central Eurasia: stable isotope analysis of populations spanning the Bronze Age transition. Journal of Archaeological Science 42:525–38.Google Scholar
Wang, G, Han, J, Zhou, L, Xiong, X, Wu, Z. 2005. Carbon isotope ratios of plants and occurrences of C4 species under different soil moisture regimes in arid region of Northwest China. Physiologia Plantarum 125:7481.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar
Wood, RE, Higham, T, Buzilhova, A, Surorov, A, Heinemeier, J, Olsen, J. 2013. Freshwater radiocarbon reservoir effects at the burial ground of Minino, northwest Russia. Radiocarbon 55(1):163–77.Google Scholar