Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:52:32.113Z Has data issue: false hasContentIssue false

Formal Statistical Models for Estimating Radiocarbon Calibration Curves

Published online by Cambridge University Press:  18 July 2016

C E Buck*
Affiliation:
Department of Probability & Statistics, University of Sheffield, United Kingdom
P G Blackwell
Affiliation:
Department of Probability & Statistics, University of Sheffield, United Kingdom
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the development and implementation of a model-based statistical method for the estimation of radiocarbon calibration curves using diverse data. The method takes account of uncertainty on both the 14C and calendar scales, coherently integrating data, the calendar age estimates of which arise from different dating methods. It also allows for correlation between observations, if they have particular sources of uncertainty in common. We adopt an approach based on a random walk model, tailoring it to take account of possible calendar age offsets between different data sources by adding a random effect component. The latter allows us to use the same modeling framework for constructing the new calibration curve IntCal04, the comparison curve NotCal04, the Southern Hemisphere curve SHCal04, and the marine calibration curve Marine04.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Christen, JA, Nicholls, G. 2000. Random-walk radiocarbon calibration. Technical report #457. Auckland: Mathematics Department, University of Auckland.Google Scholar
Goméz Portugal Aguilar, D, Litton, CD, O'Hagan, A. 2002. Novel statistical model for a piece-wise linear radiocarbon calibration curve. Radiocarbon 44(1): 195212.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Herring, C, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr B P. Radiocarbon, this issue.Google Scholar
Knox, FB, McFadgen, BG. 1997. Least-squares fitting a smooth curve to radiocarbon calibration data. Radiocarbon 39(2):193204.Google Scholar
McCormac, G, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon, this issue.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Herring, C, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, this issue.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, FG, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04–comparison/calibration 14C records 26–50 cal kyr BP. Radiocarbon, this issue.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar
West, M, Harrison, PJ. 1997. Bayesian Forecasting and Dynamic Models. 2nd edition. New York: Springer-Verlag.Google Scholar