Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T11:00:11.725Z Has data issue: false hasContentIssue false

Exploring the 14C Bomb Peak with Tree Rings of Tropical Species from the Amazon Forest

Published online by Cambridge University Press:  28 April 2017

R Linares*
Affiliation:
Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ, Brazil
H C Santos
Affiliation:
INFN, Laboratori Nazionali del Sud, Via S. Sofia, 62, 95123, Catania, Italy
A F N Brandes
Affiliation:
Instituto de Biologia, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
C F Barros
Affiliation:
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 22460-030, Rio de Janeiro, RJ, Brazil
C S Lisi
Affiliation:
Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE, Brazil
F C Balieiro
Affiliation:
Centro Nacional de Pesquisa de Agrobiologia, Empresa Brasileira de Pesquisa Agropecuária, 23890-000, Seropédica, RJ, Brazil
S M de Faria
Affiliation:
Centro Nacional de Pesquisa de Agrobiologia, Empresa Brasileira de Pesquisa Agropecuária, 23890-000, Seropédica, RJ, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

In this work we explore the radiocarbon (14C) signal as an independent tool to assess the year of formation of individual tree rings of tropical species in northern Brazil. Three different species were analyzed in this work: Dipteryx magnifica, Enterolobium maximum, and Hymenolobium petraeum. The studied samples are from the stem of only one individual of each species, all cut down in 2008 in Porto Trombetas, Pará, Brazil. Individual tree rings were identified based on wood anatomy and they were counted from bark to pith. Several rings were selected for 14C analysis in order to cover the overall shape of the 14C atmospheric bomb peak (after 1955). The 14C content was measured at Laboratory of Radiocarbon, Universidade Federal Fluminense (LAC-UFF). Results are compared with the Southern Hemisphere 14C atmospheric calibration curves. For E. maximum and H. petraeum the 14C signal exhibits an overall good match with the SH zone 3 and suggests annual seasonality in the growth-ring formation. These species offer suitable characteristics for dendrochronology. The D. magnifica shows mismatches in the 14C measurements that are likely a result of difficulties in identifying ring boundaries with certainty. Additional techniques may be helpful to disentangle the origin of this discrepancy.

Type
Rapid Event in the Natural Atmospheric 14C Content
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

Andreu-Hayles, L, Santos, GM, Herrera-Ramirez, DA, Martin-Fernández, J, Ruiz-Carrascal, D, Boza-Espinoza, TE, Fuentes, AF, Jørgensen, PM. 2015. Matching dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudolmedia rigida from Bolivia. Radiocarbon 57(1):113.CrossRefGoogle Scholar
Chambers, JQ, Higuchi, N, Schimel, JP. 1998. Ancient trees in Amazonia. Nature 391:135136.Google Scholar
de Camargo, PB, Salomão, R de P, Trumbore, S, Martinelli, LA. 1994. How old are large Brazil-nut trees (Bertholletia excelsa) in the Amazon? Scientia Agricola, Piracicaba 51(2):389391.Google Scholar
de Lima, HC, Lima, IB. Dipteryx in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB22954>. Accessed on 5 Oct. 2015..+Accessed+on+5+Oct.+2015.>Google Scholar
Fedalto, LC, Mendes, ICA, Coradin, VTR. 1989. Madeiras da Amazônia. Descrição do lenho de 40 espécies ocorrentes na Floresta Nacional do Tapajós.Google Scholar
Ferreira, GC, Hopkins, MJG. 2004. Manual de identificação botânica e anatômica – angelim. Belém: Embrapa Amazônia Oriental.Google Scholar
Fritts, H. 1976. Tree Rings and Climate. New York: Academic Press. 433 p.Google Scholar
Fritts, HC, Swetnam, TW. 1989. Dendroecology: a tool for evaluating variations in past and present forest environments. Advances in Ecological Research 19:111188.CrossRefGoogle Scholar
Fu, R, Zhu, B, Dickinson, RE. 1999. How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? Journal of Climate 12:13061321.Google Scholar
Greco, S, Swap, R, Garstang, M, Ulanski, S, Shipham, M, Harriss, RC, Talbot, R, Andreae, MO, Artaxo, P. 1990. Rainfall and surface kinematics conditions over central Amazon during ABLE 2B. Journal of Geophysical Research 75(D10): 17,001014.Google Scholar
Hogg, AG, McCormac, FG, Higham, TF, Reimer, PJ, Baillie, MG, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–1950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCAL13 Southern Hemisphere calibration 0–50,000 years cal BP. Radiocarbon 55(4):18891903.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Worbes, M, Head, J, Levchencko, VA. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. IAWA Journal 20(3):261283.Google Scholar
Hua, Q, Barbetti, M, Levchenko, VA, D’Arrigo, RD, Buckley, BM, Smith, AM. 2012. Monsoonal influences on Southern Hemisphere 14CO2 . Geophysical Research Letters 39:L19806.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950 and 2010. Radiocarbon 53(2):20592072.Google Scholar
Kairiukstis, L, Shiyatov, SG, Kocharov, GE, Mazepa, V, Dubinskaite, J, Vaganov, E, Bitvinskas, T, Jones, PD. 1990. Tree rings in the study of future change. In: Cook ER, Kairiukstis LA, editors. Methods of Dendrochronology: Applications in the Environmental Sciences. Netherlands: Springer. p 289340.CrossRefGoogle Scholar
Killmann, W, Hong, LT. 1995. The periodicity of growth in tropical trees with special reference to Diptero carpaceae - A review. IAWA Journal 16(4):329335.CrossRefGoogle Scholar
Linares, R, Macario, KD, Santos, GM, Carvalho, C, Santos, HC, Gomes, PRS, Castro, MD, Oliveira, FM, Alves, EQ. 2015. Radiocarbon measurements at LAC-UFF: Recent performance. Nuclear Instruments and Methods in Physics Research B 361:341345.CrossRefGoogle Scholar
Lisi, CS, Pessenda, LCR, Tomazello Filho, M, Rozanski, K. 2001. 14C bomb effect in tree rings of tropical and subtropical species of Brazil. Tree-Ring Research 57(2):191196.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, RM, Oliveira, MI, Pereira, BB, Moreira, V, Muniz, MC, Linares, R, Gomes, PRS, dos Anjos, RM, Castro, MD, dos Anjos, L, Marques, AN, Rodrigues, LF. 2015. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments & Methods in Physics Research B 361:402405.Google Scholar
Mainieri, C, Chimelo, JP. 1989. Fichas de Características das Madeiras Brasileiras. IPT - Instituto de Pesquisas Tecnológicas.Google Scholar
McCormac, FG, Hogg, AG, Higham, TFG, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters (25):13211324.CrossRefGoogle Scholar
Morim, MP. 2015. Enterolobium in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB22963>..>Google Scholar
Poussart, PF, Evans, MN, Schrag, DP. 2004. Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth and Planetary Science Letters 218:301316.CrossRefGoogle Scholar
Poussart, PM, Myneni, SCB, Lanzirotti, A. 2006. Tropical dendrochemistry: a novel approach to estimate age and growth from ringless trees. Geophysical Research Letters 33:L17711.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. INTCAL13 and MARINE13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Santos, GM, Linares, R, Lisi, CS, Tomazzello-Filho, M. 2015. Annual growth rings in a sample of Parana pine (Araucaria angustifolia): toward improving the C calibration curve for the Southern Hemisphere. Quaternary Geochronology 25:96103.Google Scholar
Schulman, E. 1956. Dendroclimatic Changes in Semiarid America. Tucson: University of Arizona Press.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.Google Scholar
Speer, JH. 2010. Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press. 369 p.Google Scholar
ter Steege, H, et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342:6156.CrossRefGoogle ScholarPubMed
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259:320329.Google Scholar
Whitmore, T. 1990. An Introduction to Tropical Rain Forests. New York: Oxford University Press. 296 p.Google Scholar
Worbes, M. 1995. How to measure growth dynamics in tropical trees a review. IAWA Journal 16(4):337351.Google Scholar
Worbes, M. 2002. One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217231.CrossRefGoogle Scholar
Worbes, M, Junk, WJ. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503507.CrossRefGoogle Scholar
Worbes, M, Junk, WJ. 1999. How old are tropical trees? The persistence of a myth. IAWA Journal 20(3):255260.Google Scholar