Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T12:01:09.888Z Has data issue: false hasContentIssue false

Exploring sample size limits of AMS gas Ion Source 14C analysis at Cologneams

Published online by Cambridge University Press:  09 December 2019

Jan Olaf Melchert
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Str. 49b, 50674 Cologne, Germany
Alexander Stolz
Affiliation:
Institute of Nuclear Physics, University of Cologne, Zuelpicher Str. 77, 50937 Cologne, Germany
Alfred Dewald
Affiliation:
Institute of Nuclear Physics, University of Cologne, Zuelpicher Str. 77, 50937 Cologne, Germany
Merle Gierga
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Str. 49b, 50674 Cologne, Germany
Philipp Wischhöfer
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Str. 49b, 50674 Cologne, Germany
Janet Rethemeyer*
Affiliation:
Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Str. 49b, 50674 Cologne, Germany
*
*Corresponding author. Email: [email protected].

Abstract

Increasing demands for small-scale radiocarbon (14C) analyses required the installation of a “SO-110 B” type ion source (HVE Europa B.V.) at our 6 MV Tandetron AMS (HVE) dedicated for the direct injection of CO2 using either the gas injection system (GIS) from Ionplus AG or a EuroVector EA 3000 elemental analyzer (EA). We tested both systems with multiple series of 14C-free and modern standards (2.5–50 µg C) combusted in quartz ampoules or EA containers and were able to quantify exogenous C introduced. In EA-GIS-AMS analysis exogenous C is mainly derived from the EA sample containers. Blank values for 50 µg C combusted in solvent-cleaned tin (Sn) vessels were 0.0127 ± 0.0012 F14C (boats) and 0.0090 ± 0.0010 F14C (capsules), while they were much higher for thermally cleaned silver (Ag) capsules. The processing of gas samples for GIS-AMS yields similar blank values corresponding to 0.30 ± 0.08 µg exogenous C with 0.93 ± 0.23 F14C consisting of 0.28 µg C modern and 0.02 µg C fossil C. The combustion of larger amounts of blank material (1 mg C) in a single quartz tube split into aliquots gives lower blanks (0.0064 ± 0.0008 F14C; 50 µg C). Thus, 14C analysis of small, gaseous samples is now possible at CologneAMS.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fewlass, H, Talamo, S, Tuna, T, Fagault, Y, Kromer, B, Hoffmann, H, Pangrazzi, C, Hublin, J-J, Bard, E. 2018. Size matters: Radiocarbon dates of <200 µg ancient collagen samples with AixMICADAS and its gas ion source. Radiocarbon 60:425439.CrossRefGoogle Scholar
Gierga, M, Schneider, MPW, Wiedemeier, DB, Lang, SQ, Smittenberg, RH, Hajdas, I, Bernasconi, SM, Schmidt, MWI. 2014. Purification of fire derived markers for μg scale isotope analysis (δ13C, Δ14C) using high performance liquid chromatography (HPLC). Org Geochem. 70:19.CrossRefGoogle Scholar
Haghipour, N, Ausin, B, Usman, MO, Ishikawa, N, Wacker, L, Welte, C, Ueda, K, Eglinton, TI. 2019. Compound-specific radiocarbon analysis by elemental analyzer-accelerator mass spectrometry: Precision and limitations. Anal. Chem. 91: 20422049.CrossRefGoogle ScholarPubMed
Hanke, UM, Wacker, L, Haghipour, N, Schmidt, MWI, Eglinton, TI, McIntyre, CP. 2017. Comprehensive radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples. Radiocarbon 59:11031116.CrossRefGoogle Scholar
Lang, SQ, Früh-Green, GL, Bernasconi, SM, Wacker, L. 2013. Isotopic (δ13C, Δ14C) analysis of organic acids in marine samples using wet chemical oxidation. Limnol Oceanogr Methods. 11: 161175.CrossRefGoogle Scholar
Rethemeyer, J, Fülöp, R-H, Höfle, S, Wacker, L, Heinze, S, Hajdas, I, Patt, U, König, S, Stapper, B, Dewald, A. 2013. Status report on sample preparation facilities for 14C analysis at the new CologneAMS center. Nuclear Instruments and Methods in Physics Research B 294:168172.CrossRefGoogle Scholar
Ruff, M, Fahrni, S, Gäggeler, HW, Hajdas, I, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010a. On-line radiocarbon measurements of small samples using Elemental Analyzer and MICADAS gas ion source. Radiocarbon 52:16451656.CrossRefGoogle Scholar
Ruff, M, Szidat, S, Gäggeler, HW, Suter, M, Synal, H-A, Wacker, L. 2010b. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268:790794.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research B 259(1):293302.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Drenzek, NJ, Ziolkowski, LA, Druffel, E, Xu, X, Zhang, D, Trumbore, S, Eglinton, TI, Hughen, KA. 2010. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. Radiocarbon 52:13221335.CrossRefGoogle Scholar
Santos, GM, Xu, X. 2017. Bag of tricks: A set of techniques and other resources to help 14C laboratory setup, sample processing, and beyond. Radiocarbon 59:785801.CrossRefGoogle Scholar
Stolz, A, Dewald, A, Altenkirch, R, Herb, S, Heinze, S, Schiffer, M, Feuerstein, C, Müller-Gatermann, C, Wotte, A, Rethemeyer, J, Dunai, T. 2017. Radiocarbon measurements of small gaseous samples at CologneAMS. Nuclear Instruments and Methods in Physics Research B 406:283286.CrossRefGoogle Scholar
Stolz, A, Dewald, A, Heinze, S, Altenkirch, R, Hackenberg, G, Herb, S, Müller-Gatermann, C, Schiffer, M, Zitzer, G, Wotte, A, Rethemeyer, J, Dunai, T. 2019. Improvements in the measurement of small 14CO2 samples at CologneAMS. Nuclear Instruments and Methods in Physics Research B 439:7075.CrossRefGoogle Scholar
Welte, C, Hendriks, L, Wacker, L, Haghipour, N, Eglinton, TI, Günther, D, Synal, H-A. 2018. Towards the limits: Analysis of microscale 14C samples using EA-AMS. Nuclear Instruments and Methods in Physics Research B 437:6674.CrossRefGoogle Scholar
Wotte, A, Wordell-Dietrich, P, Wacker, L, Don, A, Rethemeyer, J. 2017. 14CO2 processing using an improved and robust molecular sieve cartridge. Nuclear Instruments and Methods in Physics Research B 400:6573.CrossRefGoogle Scholar
Supplementary material: File

Melchert et al. supplementary material

Table S1

Download Melchert et al. supplementary material(File)
File 35.3 KB