Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T22:08:22.727Z Has data issue: false hasContentIssue false

EXPERIMENTS AT MODANE UNDERGROUND LABORATORY OR THE SWAN SONG OF RADIOCARBON ß-COUNTING BY GAS PROPORTIONAL COUNTER

Published online by Cambridge University Press:  18 October 2021

Michel Fontugne
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France LAMPEA - UMR 7269, Maison Méditerranéenne des Sciences de l’Homme, 5 rue du Château de l’Horloge, 13094, Aix-en-Provence, France
Christine Hatté*
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
Michel Jaudon
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, UMR 8212, CEA CNRS UVSQ, Université Paris-Saclay, F-91191Gif-sur-Yvette, France
*
*Corresponding author. Email: [email protected]

Abstract

In 1991, a 14C ß-counting installation with four proportional CO2 gas counters was tested at the Modane underground laboratory, 1700 m below the summit of Pointe du Fréjus, reducing the muon flux to 4 muons per square meter and per day. With cosmic radiation attenuated by a factor of 2.106, the background level of the counters was reduced by 65 to 85% while its variability was reduced by a factor of 30–80 depending on the type of counter. The dating limit of these counters extends to well beyond 60,000 years.

Type
Technical Note
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

REFERENCES

Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 110:678680.CrossRefGoogle ScholarPubMed
Boëda, E, Fontugne, M, Hatté, C, Clemente-Conte, I, Santos, J, Rocca, R, Lourdeau, A, Villagran, X, Lucas, L, Gluchy, M, Ramos Marcos, P, Lahaye, C, Felice, G, Griggo, C, Pino, M, Viana, S, Da Costa, A, Guidon, N, Pessis, A-M, Borges, C, Bruno, G. 2016. New Data on a Pleistocene archaeological sequence in South America: Toca do Sítio do Meio, Piauí, Brazil. PaleoAmerica 2:286302.CrossRefGoogle Scholar
Boëda, E, Fontugne, M, Valladas, H, Ortega, I. 1996. Barbas III : industrie du Paléolithique moyen récent et du Paléo-lithique supérieur ancien. In: Carbonell, E, Vaquero, M, editors. The last Neandertals, the first anatomically modern humans. Cultural change and human evolution: the crisis at 40 ka B.P. p. 147156.Google Scholar
Bowman, S. 1989. Liquid scintillation counting in the London Underground. Radiocarbon 31: 393398.CrossRefGoogle Scholar
Calf, GE, Airey, PL. 1982. Liquid scintillation counting of carbon-14 in a heavily shielded site. In: Ambrose, W, Duerden, P, editors. Archaeometry: an Australasian perspective. The Australian National University. p. 351356.Google Scholar
Chazal, V, Brissot, R, Cavaignac, JF, Chambon, B, de Jesus, M, Drain, D, Giraud-Heraud, Y, Pastor, C, Stutz, A, Vagneron, L. 1998. Neutron background measurements in the Underground Laboratory of Modane. Astroparticle Physics 9(2):163172.CrossRefGoogle Scholar
Defleur, A, Bez, JF, Cregut-Bonnoure, E, Fontugne, M, Jeanet, M, Magnin, F, Talon, B, Thinon, M, Combier, J. 1994. Industrie, biostratigraphie, restes humains et datation du gisement moustérien de la Baume Néron (Soyon, Ardèche). C.R.Acad Sci. 318(II):14091414.Google Scholar
Délibrias, G. 1985. Le carbone 14. In: Roth, E, Potty, B, Ménager, M-T, editors. Méthodes de datation par les phénomènes nucléaires naturels. Masson. p. 421458.Google Scholar
Delibrias, G, Rapaire, J-L. 1967. Étude du mouvement propre d’une installation de comptage à bas niveau. Rad. Dating Methods of Low-level Counting, IAEA. p. 603–610.Google Scholar
Fontugne, M, Hatté, C. 2007. Datations des occupations moustériennes de l’oued El Akarit (Tunisie). In: Roset, JP, Harbi-Riahi, M, editors. El Akarit. Un site archéologique du Paléolithique moyen dans le sud de la Tunisie. Edition Recherche sur les Civilisations, MAE. p. 353356.Google Scholar
Fontugne, M, Kuzucuoglu, C, Karabiyikoglu, M, Hatté, C, Pastre, JF 1999. From Pleniglacial to Holocene. A 14C chronology of environmental changes in the Konya plain, Turkey. Quaternary Science Reviews 18(4–5):573592. doi: 10.1016/S0277-3791(98)90098-1.CrossRefGoogle Scholar
Grootes, PM, Stuiver, M. 1979. The Quaternary Isotope Laboratory thermal diffusion enrichment system: description and performance. Radiocarbon 21:139164.CrossRefGoogle Scholar
Guadelli, J-L, Sirakov, N, Ivanova, St, Sirakova, Sv, Anastassova, E, Courtaud, P, Dimitrova, I, Djabarska, N, Fernandez, P, Ferrier, C, Fontugne, M, Gambier, D, Guadelli, A, Iordanova, D, Iordanova, N, Kovatcheva, M, Krumov, I, Leblanc, J-C, Mallye, J-B, Marinska, M, Miteva, V, Popov, V, Spassov, R, Taneva, St, Tisnérat-Laborde, N, Tsanova, Ts. 2005. Une séquence du Paléolithique inférieur au Paléolithique récent dans les Balkans: la grotte Kozarnika à Orechets (nord-ouest de la Bulgarie). In: Molines, N, Moncel, M-H, Monnier, J-L, editors. Colloque international: Données récentes sur les modalités de peuplement et sur le cadre chronostratigraphique, géologique et paléogéographique des industries du Paléolithique ancien et moyen en Europe (Rennes, 22–25 septembre 2003), Les premiers peuplements en Europe. Oxford: John and Erica Hedges Ltd, Oxford. British Archaeological Reports, International Series/S1364:87–104.Google Scholar
Hatté, C, Antoine, P, Fontugne, MR, Rousseau, D-D, Tisnérat-Laborde, N, Zöller, L. 1999. New chronology and organic matter δ13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany). Quaternary International 62:8591.CrossRefGoogle Scholar
Hatté, C, Hodgins, G, Jull, AJT, Bishop, B, Tesson, B. 2008. Marine chronology based on 14C dating on diatoms proteins. Marine Chemistry 109:143151.CrossRefGoogle Scholar
Hublin, JJ, Barroso Ruiz, C, Medina Lara, P, Fontugne, M, Reyss, JL. 1995. The Mousterian site of Zafarraya (Andalucia, Spain): dating and implications on the paleolithic peopling processes of Western Europe. C.R.Acad Sci, série IIa 321:931937.Google Scholar
Kalin, MR, Long, A. 1989. Radiocarbon dating with a Quantulus in an underground counting laboratory: Performance and background sources. Radiocarbon 31:359367.CrossRefGoogle Scholar
Karlen, I, Olsson, IU, Kallberg, P, Kilicci, S. 1964. Absolute determination of the activity of two 14C dating standards. Arkiv for Geofysik 4(22):465471.Google Scholar
Kuzucuoglu, C, Pastre, J-F, Black, S, Ercan, T, Fontugne, M, Guillou, H, Hatté, C, Karabiyikoglu, M, Orth, P, Turkecan, A. 1998. Identification and dating of tephras from Quaternary sedimentary sequences of inner Anatolia. J. Volc. Geotherm. Res. 85:153172. doi: 10.1016/S0377-0273(98)00054-7.CrossRefGoogle Scholar
Loosli, HH, Heimann, M, Oeschger, H. 1980. Low level gas proportional counting in an underground laboratory. Radiocarbon 22:461469.CrossRefGoogle Scholar
Olsson, I. 1958. A C14 dating station using the CO2 proportional counting method. Arkiv for Fysik 13:3760.Google Scholar
Pasquier-Cardin, A, Allard, P, Ferreira, T, Hatté, C, Coutinho, R, Fontugne, MR, Jaudon, M. 1999. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geothermal Research 92:195207.CrossRefGoogle Scholar
Rapaire, JL. 1968. Mouvement propre d’une installation de comptage à bas niveau : contribution locale et cosmique [PhD dissertation]. Univ. Orsay-Paris XI. 131 p.Google Scholar
Reyss, JL, Schmidt, S, Legeleux, F, Bonté, P. 1994. Mesures de radioactivité dans l’environnement à l’aide de détecteurs “germanium puits” de grande efficacité et de très faible bruit de fond. Journées de Spectrométrie Gamma et X. BNM. p. 289–294.Google Scholar
Schotterer, U, Oeschger, H. 1980. Low-level liquid scintillation counting in an underground laboratory. Radiocarbon 22:505511.CrossRefGoogle Scholar
Stuiver, M, Robinson, SW, Yang, IC. 1979. 14C Dating to 60,000 years B.P. with proportional counters. In: Berger, R, Suess, HE, editors. Radiocarbon dating: Proceedings of the 9th International 14C Conference. Berkeley/Los Angeles: University of California Press. p. 202215.CrossRefGoogle Scholar
Theodorsson, P. 1991a. The background of gas proportional counters. Journal of Physics 17: 419427.CrossRefGoogle Scholar
Theodorsson, P. 1991b. Gas proportional versus liquid scintillation counting, radiometric versus AMS dating. Radiocarbon 33(1):913.CrossRefGoogle Scholar
Theodorsson, P. 1992. Quantifying background components of low-level gas proportional counters. Radiocarbon 34:420427.CrossRefGoogle Scholar
Vialou, D, Benabdelhadi, M, Feathers, J, Fontugne, M, Vilhena Vialou, A. 2017. Peopling South America’s centre: the late Pleistocene site of Santa Elina. Antiquity 91(358):865884. doi: 10.15184/aqy.2017.101.CrossRefGoogle Scholar
Vogel, JC, Marais, M. 1971. Pretoria Radiocarbon Dates I. Radiocarbon 13:378394.CrossRefGoogle Scholar
de Vries, H. 1956. The contribution of neutrons to the background of counters used for C-14 age measurements. Nuclear Physics 1:477479.CrossRefGoogle Scholar
de Vries, H. 1957. Further analysis of the neutron component of the background of counters used for C-14 age measurements. Nuclear Physics 3:6568.CrossRefGoogle Scholar