Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T03:00:58.211Z Has data issue: false hasContentIssue false

Estimation of Long-Term Trends in the Tropospheric 14CO2 Activity Concentration

Published online by Cambridge University Press:  18 July 2016

I Svetlik*
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, CZ-180 86 Prague, Czech Republic
P P Povinec
Affiliation:
Faculty of Mathematics, Physics and Informatics, Comenius University, SK-842 48 Bratislava, Slovakia
M Molnár
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Bem tér 18/c, 4026 Debrecen, Hungary
F Meinhardt
Affiliation:
Federal Environmental Agency, Schauinsland station, P.O. 1229, 79196 Kirchzarten, Germany
V Michálek
Affiliation:
National Radiation Protection Institute, Bartoskova 28, CZ-140 00 Prague, Czech Republic
J Simon
Affiliation:
Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, SK-010 26 Žilina, Slovakia
É Svingor
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Bem tér 18/c, 4026 Debrecen, Hungary
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fossil CO2 emissions have been diluting the global 14C/C ratio of atmospheric CO2 (Suess effect). We estimated the 14CO2 amount in the atmosphere (and its trend) utilizing the calculated 14CO2 activity concentration in the atmosphere (aacn , reported in mBq m–3). This parameter, calculated from Δ14CO2 and the CO2 mixing ratio (reported in micromoles of CO2 per mole of air), is connected with the 14CO2 quantity in the volume or mass unit of air, which is not influenced by the Suess effect. This parameter can only be influenced by processes linked to 14CO2 emissions/uptake, e.g. associated with atmosphere-biosphere or atmosphere-ocean CO2 exchange as well as by anthropogenic emissions of 14CO2. Results obtained from measurements at Schauinsland station, Germany, indicate a stable amount of 14CO2 in the atmosphere since the early 1990s.

Type
Methods, Applications, and Developments
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320–2.CrossRefGoogle Scholar
Burchuladze, AA, Chudy, M, Eristavy, IV, Pagava, SV, Povinec, P, Šivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771–6.CrossRefGoogle Scholar
Caldeira, K, Rau, GH, Duffy, PB. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters 25(20):3811–4.CrossRefGoogle Scholar
CDIAC (Carbon Dioxide Information Analysis Center). 2009. Trends: A Compendium of Data on Global Change. URL: http://cdiac.ornl.gov/trends/trends.htm. Accessed 23 July 2009.Google Scholar
Csongor, É, Hertelendi, E. 1986. Low-level counting facility for 14C dating. Nuclear Instruments and Methods in Physics Research B 17(5–6):493–5.CrossRefGoogle Scholar
Csongor, É, Szabó, I, Hertelendi, E. 1982. Preparation of counting gas of proportional counters for radiocarbon dating. Radiochemical and Radioanalytical Letters 55:303–7.Google Scholar
Curie, LA. 1995. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendation 1995). Pure and Applied Chemistry 67(10):1699–723.Google Scholar
Hertelendi, E. 1990. Sources of random error in the Debrecen radiocarbon laboratory. Radiocarbon 32(3):283–7.CrossRefGoogle Scholar
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, J, Gál, J, Györffi, M, Nagy, S. 1989. A counter system for high-precision 14C dating. Radiocarbon 31(3):399406.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, V, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.CrossRefGoogle Scholar
IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007 - The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the IPCC, 2007. New York: United Nations.Google Scholar
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon 40(1):417–23.Google Scholar
Lal, D, Peters, B. 1967. Cosmic-ray produced radioactivity on the earth. In: Flügge, S, editor. Encyclopaedia of Physics 45(2). Berlin: Springer Verlag. p 551612.Google Scholar
Lal, D, Suess, HE. 1968. The radioactivity of the atmosphere and hydrosphere. Annual Review of Nuclear Science 18:407–34.CrossRefGoogle Scholar
Levin, I, Kromer, B. 1997. Twenty years of high-precision atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Levin, I, Rödenbeck, C. 2008. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations? Naturwissenschaften 95(3):203–8.CrossRefGoogle ScholarPubMed
Levin, I, Münnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the dilution of 14C in atmosphere. Radiocarbon 22(2):379–81.CrossRefGoogle Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus B 47:2334.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.CrossRefGoogle ScholarPubMed
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.CrossRefGoogle Scholar
Meijer, HAJ, van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Long-term atmospheric records near Groningen, Fruholmen, and Izaña. Radiocarbon 37(1):3950.CrossRefGoogle Scholar
Molnár, M, Bujtás, T, Svingor, É, Futó, I, Svetlik, I. 2007. Monitoring of atmospheric excess 14C around Paks nuclear power plant, Hungary. Radiocarbon 49(2):1031–43.CrossRefGoogle Scholar
Molnár, M, Haszpra, L, Major, I, Svingor, É, Veres, M. 2009. Development of a mobile and high-precision atmospheric CO2 monitoring station. European Geosciences Union (EGU) General Assembly 2009. Vienna, Austria, 19–24 April 2009. Proceedings. Geophysical Research Abstract CD-ROM 11:10271.Google Scholar
Molnár, M, Haszpra, L, Svingor, É, Major, I, Svetlik, I. 2010. Atmospheric fossil fuel CO2 measurement using a field unit in a central European city during the winter of 2008/09. Radiocarbon 52(2–3):835–45.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1965. Distribution of radiocarbon from nuclear tests. Nature 206(4988):1029–31.CrossRefGoogle ScholarPubMed
Schneider, RJ, McNichol, AP, Nadeau, M-J, von Reden, KF. 1995. Measurements of the oxalic acid II/oxalic acid I ratio as a quality control parameter at NOSAMS. Radiocarbon 37(2):693–6.CrossRefGoogle Scholar
Segl, M, Levin, I, Schoch-Fischer, H, Münnich, M, Kromer, B, Tschiersch, J, Münnich, KO. 1983. Anthropogenic 14C variations. Radiocarbon 25(2):583–92.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3)355–63.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415–7.CrossRefGoogle Scholar
Svetlik, I, Molnár, M, Svingor, E, Futó, I, Pintér, T, Rulík, P, Michálek, V. 2006. Monitoring of atmospheric 14CO2 in central European countries. Czechoslovak Journal of Physics 56D(4):291–7.Google Scholar
Svetlik, I, Povinec, PP, Molnár, M, Vána, M, Šivo, A, Bujtás, T. 2010. Radiocarbon in the air of central Europe: long-term investigations. Radiocarbon 52(2–3):823–34.CrossRefGoogle Scholar
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Exposures from natural and man-made sources of radiation. Report to the General Assembly 1. New York: United Nations.Google Scholar
WDCGG (World Data Centre for Greenhouse Gases). 2009. URL: http://gaw.kishou.go.jp/wdcgg/. Accessed 23 July 2009.Google Scholar