Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:52:25.575Z Has data issue: false hasContentIssue false

Este, Padova, Italy: Dating the Iron Age Waterfront

Published online by Cambridge University Press:  09 February 2016

John Meadows*
Affiliation:
Zentrum für Baltische und Skandinavische Archäologie, Schloss Gottorf, 24837 Schleswig, Germany Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 11–13, 24118 Kiel, Germany
Nicoletta Martinelli
Affiliation:
Dendrodata s.a.s., via Cesiolo 18, Verona 37126, Italy
Marie-Josée Nadeau
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 11–13, 24118 Kiel, Germany
Elodia Bianchin Citton
Affiliation:
Soprintendenza per i Beni Archeologici del Veneto, via Aquileia 7, Padova 35139, Italy
*
Corresponding author. Email: [email protected].

Abstract

Two floating tree-ring chronologies were developed from oak timbers recovered during salvage excavations of a pre-Roman wharf in Este, a prominent center of the Veneti people, who lived in northeastern Italy during the Iron Age. Wiggle-match radiocarbon dating shows that one chronology spans the 10th and 9th centuries cal BC, and that the waterfront was probably built ∼800 cal BC. The second chronology apparently spans most of the 7th century cal BC, and is associated with a phase of construction about 2 centuries after the first. One of the samples gave what appeared to be anomalous 14C results that may best be explained as evidence of a short-term fluctuation in atmospheric 14C level, which can be seen in short-lived samples but is not apparent in the decadal or bidecadal calibration data. Both chronologies cover periods for which there are no other tree-ring chronologies in this region, and could become key to refining the local Iron Age chronology.

Type
Methodology: Tree Rings and Plants
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bianchin Citton, E, Martinelli, N. 2005. Cronologia relativa e assoluta di alcuni contesti veneti dell'età del Bronzo recente, finale e degli inizi dell'età del Ferro. Nota preliminare. Atti dell'Incontro di studio “Oriente e Occidente: metodi e discipline a confronto. Riflessioni sulla cronologia dell'età del Ferro italiana.” “Mediterranean,” Quaderni annuali dell'I-stituto di Studi sulle civiltà italiche e del mediterraneo antico del Consiglio Nazionale delle Ricerche I (2004):239–53.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.CrossRefGoogle Scholar
Buck, CE, Blackwell, PG. 2004. Formal statistical models for estimating radiocarbon calibration curves. Radiocarbon 46(3): 1093–102.CrossRefGoogle Scholar
Corona, E. 1974. Ricostruzione dell'alburno in legnami sommersi. Geoarcheologia 1/2:1922.Google Scholar
Grootes, PM, Nadeau, M-J, Rieck, A. 2004. 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223–224:5561.CrossRefGoogle Scholar
Heußner, K-U, Sljusarenko, I. 2010. Die dendrochronologie. In: Cugunov, KV, Parzinger, H, Nagler, A, editors. Der skythenzeitliche Fürstenkurgan Arzan 2 in Tuva. Mainz, Archäologie in Eurasien 26:178–82.Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240–2.CrossRefGoogle ScholarPubMed
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Nakamura, T, Masuda, K, Miyake, F, Nagaya, K, Yoshimitsu, T. 2013. Radiocarbon ages of annual rings from Japanese wood: evident age offset based on IntCal09. Radiocarbon 55(3–4):763–70.CrossRefGoogle Scholar
Ozaki, H, Imamura, M, Matsuzaki, H, Mitsutani, T. 2007. Radiocarbon in 9th to 5th century BC tree-ring samples from the Ouban 1 archaeological site, Hiroshima, Japan. Radiocarbon 49(2):473–9.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4): 1869–87.CrossRefGoogle Scholar
Rinntech. 2003. TSAP-Win™. Time series analysis and presentation for dendrochronology and related applications. Version 0.59 for Microsoft Windows 98, 2000, XP. User Reference. Heidelberg: Rinntech.Google Scholar
Ruta Serafini, A, editor. 2002. Este preromana: una città e i suoi santuari. Treviso: Canova. 342 p.Google Scholar
Ruta Serafini, A, Salerno, R, editors. 2006. Este: la strada e l'approdo fluviale dell'età del ferro di via Principe Umberto. Quaderni di Archeologia del Veneto XXII:2632.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Suzuki, K, Sakurai, H, Takahashi, Y, Sato, T, Gunji, S, Tokanai, F, Matsuzaki, H, Sunohara, Y. 2010. Precise comparison between 14C ages from Choukai Jindai cedar with IntCal04 raw data. Radiocarbon 52(4):1599–609.CrossRefGoogle Scholar
Tani, S, Kitagawa, H, Hong, W, Park, J, Sung, K, Park, G. 2013. Age determination of the Kawagodaira volcanic eruption in Japan by 14C wiggle-matching. Radiocarbon 55(3–4):748–52.CrossRefGoogle Scholar
Tosi, G, editor. 1992. Este antica dalla preistoria all'età romana. Este: Zielo. 441 p.Google Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, SK, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy & Astrophysics 552: L3.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar