Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T10:58:11.912Z Has data issue: false hasContentIssue false

Did Sea-Level Changes Affect the Brazilian Amazon Forest during the Holocene?

Published online by Cambridge University Press:  02 August 2017

Mayra Nina Araujo Silva
Affiliation:
Graduate Program of Geology and Geochemistry, Federal University of Pará. Av. Perimentral 2651, Terra Firme, 66077–530, Belém (PA), Brazil
Marcelo C L Cohen*
Affiliation:
Graduate Program of Geology and Geochemistry, Federal University of Pará. Av. Perimentral 2651, Terra Firme, 66077–530, Belém (PA), Brazil
Dilce F Rossetti
Affiliation:
National Space Research Institute (INPE), Rua dos Astronautas 1758–CP 515, CEP:12245–970, São José dos Campos (SP), Brazil
Luiz C R Pessenda
Affiliation:
University of São Paulo, 14C Laboratory, Av. Centenário 303, 13400–000, Piracicaba, São Paulo, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

In order to contribute to the discussion of Holocene climate changes, four sediment cores were collected from the northern Brazilian Amazonia lowland. These cores were studied through pollen analysis and sedimentary features, and the results were discussed within a chronological framework provided by radiocarbon dating. The cores were sampled from fluvial terraces representative of channel, floodplain/lake and crevasse splay deposits formed since the mid-Holocene. The pollen samples derive from floodplain/lake deposits and the pollen grains are mainly composed by families Moraceae, Euphorbiaceae, Caesalpiniaceae, Fabaceae, Rubiaceae, Melastomataceae, Combretaceae, Sapindaceae, Poaceae, Cyperaceae, Aizoaceae, Apiaceae and genus Sebastiana. The pollen data suggest no significant vegetation changes in the study area for the past 4808–4886 cal yr BP. This led to proposing stable climatic conditions since at least the middle Holocene. Such a finding is contrary to the occurrence of a dry period during the middle Holocene. The stabilization of the relative sea level about 6000 cal yr BP along the northern Brazilian littoral may have influenced the water table, and favored the establishment and maintenance of Amazonian lowland forest during the mid- and late Holocene. In addition, this process may have attenuated the impact of that dry period in areas under most fluvial influence.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ab’Saber, A. 1989. Zoneamento ecológico e econômico da Amazônia: questões de escala e método. Estud. Avançados 3:420.Google Scholar
Absy, ML. 1975. Polen e esporos do Quaternário de Santos (Brasil). Hoehnea 5:126.Google Scholar
Absy, ML. 1979. A palynological study of Holocene sediments in the Amazon basin [PhD thesis]. University of Amsterdam. 86 p.Google Scholar
Absy, ML, Cleef, A, Fournier, M, Martin, L, Servant, M, Sifeddine, A, Silva, MF, Soubiès, F, Suguio, K, Turcq, B, Van der Hammen, T. 1991. Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sudest de l’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. Compte Rendu de l’Académie des Sciences de Paris 312:673678.Google Scholar
Anderson, AB. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13:199210.Google Scholar
Angulo, RJ, Lessa, GC. 1997. The Brazilian sea-level curves: a critical review with emphasis on the curves from the Paranaguá and Cananéia regions. Marine Geology 140:141166.Google Scholar
Angulo, RJ, Giannini, PCF, Suguio, K, Pessenda, LCR. 1999. Relative sea-level changes in the last 5500 years in southern Brazil (Laguna-Imbituba region Santa Catarina State) based on vermitid 14C ages. Marine Geology 159:323339.CrossRefGoogle Scholar
Behling, H. 2002. Impact of the Holocene sea-level changes in coastal eastern and central Amazonia. Amazoniana 17:4152.Google Scholar
Behling, H. 2011. Holocene environmental dynamics in coastal eastern and central Amazonia and the role of the Atlantic sea-level change. Geographica Helvetica 3:208216.Google Scholar
Behling, H, Hooghiemstra, H. 1998. Late Quaternary palaeoecology and palaeoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeography Palaeoclimatology Palaeoecology 139:251267.Google Scholar
Behling, H, Hooghiemstra, H. 1999. Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology 21:461476.CrossRefGoogle Scholar
Behling, H, Costa, ML. 2000. Holocene environmental changes from the Rio Curuá record in the Caxiuanã region eastern Amazon Basin. Quaternary Research 53:369377.Google Scholar
Behling, H, Costa, ML. 2001. Holocene vegetation and coastal environmental changes from Lago Crispim in northeastern Pará State northern Brazil. Palaeogeography Palaeoclimatology Palaeoecology 114:145155.Google Scholar
Behling, H, Hooghiemstra, H. 2000. Holocene Amazon rainforest–savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15:687695.3.0.CO;2-6>CrossRefGoogle Scholar
Behling, H, Cohen, MCL, Lara, RJ. 2001. Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in northeastern Pará Brazil. Palaeogeography Palaeoclimatology Palaeoecology 167:225242.Google Scholar
Behling, H, Arz, HW, Pätzold, J, Wefer, G. 2002. Late Quaternary vegetational and climate dynamics in southeastern Brazil inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeography Palaeoclimatology Palaeoecology 179:227243.Google Scholar
Behling, H, Cohen, MCL, Lara, RJ. 2004. Late Holocene mangrove dynamics of the Marajó Island in northern Brazil. Vegetation History and Archaeobotany 13:7380.Google Scholar
Berrio, JC, Hooghiemstra, H, Behling, H, Van der Borg, K. 2000. Late Holocene history of savanna gallery forest from Carimagua area Colombia. Review of Palaeobotany and Palynology 111:295308.Google Scholar
Bos, JAA, Dambeck, R, Kalis, AJ, Schweizer, A, Thiemeyer, H. 2008. Palaeoenvironmental changes and vegetation history of the northern Upper Rhine Graben (southwestern Germany) Since the Lateglacial. Netherlands Journal of Geosciences 87:6790.Google Scholar
Broecker, WS. 2003. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science 300:15191522.Google Scholar
Bush, MB, Colinvaux, PA. 1988. A 7000-year pollen record from the Amazon lowlands Ecuador. Vegetation 76:141154.Google Scholar
Bush, MB, Miller, MC, de Oliveira, PE, Colinvaux, PA. 2000. Two histories of environmental change and human disturbance in eastern lowland Amazonia. The Holocene 10:543553.CrossRefGoogle Scholar
Bush, MB, Silman, MR, Listopad, CMCS. 2007. A regional study of Holocene climate change and human occupation in Peruvian Amazonia. Journal of Biogeography 34:13421356.Google Scholar
Castro, DF, Rossetti, DF, Pessenda, LCR. 2010. Facies δ13C, δ15N, and C/N analyses in a late Quaternary compound estuarine fill northern Brazil and relation to sea level. Marine Geology 274:135150.Google Scholar
Castro, DF, Oliveira, PE, Rossetti, DF, Pessenda, LCR. 2013. Late Quaternary landscape evolution of northeastern Amazonia from pollen and diatom record. Anais da Academia Brasileira de Ciências 85:3555.Google Scholar
Chiang, JCH, Bitz, CM. 2005. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25:477496.Google Scholar
Cohen, MCL, Behling, H, Lara, RJ. 2005a. Amazonian mangrove dynamics during the last millennium: the relative sea-level and the little Ice Age. Review of Palaeobotany and Palynology 136:93108.Google Scholar
Cohen, MCL, Souza Filho, PW, Lara, RL, Behling, H, Angulo, R. 2005b. A model of Holocene mangrove development and relative sea-level changes on the Bragança. Peninsula (northern Brazil). Wetlands Ecology and Management 13:433443.Google Scholar
Cohen, MCL, Lara, RJ, Smith, CB, Angélica, RS, Dias, BS, Pequeno, T. 2008. Wetland dynamics of Marajó Island northern Brazil during the last 1000 years. Catena 76:7077.CrossRefGoogle Scholar
Cohen, MCL, Lara, RJ, Smith, CB, Matos, HRS, Vedel, V. 2009. Impact of sea level and climatic changes on the Amazon coastal wetlands during the late Holocene. Vegetation History and Archaeobotany 18:425439.Google Scholar
Cohen, MCL, Pessenda, LCR, Behling, H, Rossetti, DF, França, MC, Guimarães, JTF, Friaes, YS, Smith, CB. 2012. Holocene palaeoenvironmental history of the Amazonian mangrove belt. Quaternary Science Reviews 55:5058.Google Scholar
Cohen, MCL, Rossetti, DF, Pessenda, LCR, Friaes, YS, Oliveira, PE. 2014. Late Pleistocene glacial forest of Humaitá—Western Amazonia. Palaeogeography Palaeoclimatology Palaeoecology 415c:4858.Google Scholar
Colinvaux, PA, De Oliveira, PE, Moreno, JE, Miller, MC, Bush, MB. 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 247:8588.CrossRefGoogle Scholar
Colinvaux, P, De Oliveira, PE, Patiño, JEM. 1999. Amazon Pollen Manual and Atlas. Dordrecht: Harwood Academic Publishers. 332 p.Google Scholar
Cordeiro, RC, Turcq, PFM, Turcq, BJ, Moreira, LS, Rodrigues, RC, Costa, RL, Sifeddine, A, Simões Filho, FFL. 2008. Acumulação de carbono em lagos amazônicos como indicador de eventos paleoclimaticos e antrópicos. Oecol. Bras 12:130154.Google Scholar
Cordeiro, RC, Turcq, BJ, Sifeddine, A, Lacerda, LD, Silva Filho, EV, Gueiros, BB, Cunha, YPP, Santelli, RE, Pádua, EO, Pachinelam, SR. 2011. Biogeochemical indicators of enviromnental changes from 50 ka to 10 ka. Palaeogeography Palaeoclimatology Palaeoecology 299:426436.Google Scholar
Davis, MB. 2000. Palynology after Y2K—understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Science 28:118.CrossRefGoogle Scholar
Desjardins, T, Filho, AC, Mariotti, A, Chauvel, A, Girardin, C. 1996. Changes of the forest savanna boundary in Brazilian Amazonia during the Holocene as revealed by soil organic carbon isotope ratios. Oecologia 108:749756.Google Scholar
Faegri, K, Iversen, J. 1989. Textbook of Pollen Analysis, 4th Ed. New York: John Wiley & Sons.Google Scholar
Fan, Y, Li, H, Miguez-Macho, G. 2013. Global patterns of groundwater table depth. Science 339:940943.Google Scholar
França, MC, Francisquini, MI, Cohen, MCL, Pessenda, LCR, Rossetti, DF, Guimarães, JTF, Smith, CB. 2012. The last mangroves of Marajó Island—Eastern Amazon: impact of climate and/or relative sea-level changes. Review of Paleobotany and Palynology 187:5065.Google Scholar
Freitas, HA, Pessenda, LCR, Aravena, R, Gouveia, SEM, Ribeiro, AS, Boulet, R. 2001. Late Quaternary vegetation dynamics in the southern Amazon basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55:3946.CrossRefGoogle Scholar
Freitas, PTA, Silva, MS, Souza Filho, PWM, Ogston, A, Nittrouer, CA, Asp, NE. 2014. Tidal influence on the hydrodynamics in a major Amazon tributary. Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) Conference. Porto de Galinhas Pernambuco, Brazil.Google Scholar
Gosling, WD, Mayle, FE, Tate, NJ, Killeen, TJ. 2009. Differentiation between neotropical rainforest dry forest and savanna ecosystems by their modern pollen spectra and implications for the fossil pollen record. Reviews of Palaeobotany and Palynology 153:7085.Google Scholar
Gouveia, SEM, Pessenda, LCR, Aravena, R, Boulet, R, Roveratti, R, Gomes, BM. 1997. Dinâmica de vegetações durante o Quaternário recente no sul no Amazonas indicada pelos isótopos do carbono (12C 13C 14C) do solo. Geochimica Brasiliensis 11:335367.Google Scholar
Gribel, R, Ferreira, CAC, Coelho, LS, Santos, JL, Ramos, J F, Silva, KAF. 2009. Vegetação do Parque Nacional do Viruá–RR. Relatório Técnico. Brasília: Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio).Google Scholar
Grimm, EC. 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Pergamon Journal 13:1335.Google Scholar
Guimarães, JTF, Cohen, MCL, França, MC, Lara, RJ, Behling, H. 2010. Model of wetland development of the Amapá littoral during the Late Holocene. Anais da Academia Brasileira de Ciências 82:115.Google Scholar
Hermanowski, B, Costa, ML, Carvalho, AT, Behling, H. 2012. Palaeoenvironmental dynamics and underlying climatic changes in southeast Amazonia (Serra Sul dos Carajás Brazil) during the late Pleistocene and Holocene. Palaeogeography Palaeoclimatology Palaeoecology 365–366:227246.Google Scholar
Howard, AJ, Gearey, B, R Hill, T, Fletcher, W, Marshall, P. 2009. Fluvial sediments correlations and palaeoenvironmental reconstruction: the development of robust radiocarbon chronologies. Journal of Archaeol. Science 36:26802688.Google Scholar
Instituto Brasileiro de Geografia e Estatística – IBGE. 2012. Manuais Técnicos em Geociências – número 1, Manual Técnico da Vegetação Brasileira– Sistema fitogeográfico Inventário das formações florestais e campestres Técnicas e manejo de coleções botânicas Procedimentos para mapeamentos. Rio de Janeiro: IBGE/ Ministério do Planejamento Orçamento e Gestão. 271 p.Google Scholar
Irion, G, Bush, MB, Nunes de Mello, JA, Stüben, D, Neumann, T, Müller, G, Morais de, JO, Junk, JW. 2006. A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós eastern Amazonia. Palaeogeography Palaeoclimatology Palaeoecology 240:523535.Google Scholar
Irion, G, Junk, WJ, Mello JASN, de. 1997. The large Central Amazonian River floodplains near Manaus: geological climatological hydrological and geomorphological aspects. In: Junk WJ, editor. The Central Amazon Floodplain. Berlin: Springer Verlag. p 2346.Google Scholar
Jacob, J, Huang, Y, Disnar, JR, et al. 2007. Paleohydrological changes during the last deglaciation in Northern Brazil. Quaternary Science Reviews 26:10041015.Google Scholar
Junk, WJ. 1994. Ecology of the várzea floodplain of Amazonian whitewater rivers. In: Harald Sioli, editor. The Amazon-Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin. Netherlands: Springer. p 215243.Google Scholar
Junk, WJ, editor. 1997. The Central Amazon Floodplain Ecological Studies. Berlin: Springer.Google Scholar
Kasse, C, Hoek, WZ, Bohncke, SJP, Konert, M, Weijers, JWH, Cassee, ML, Van der Zee, RM. 2005. Late Glacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20:377394.Google Scholar
Kosuth, P, Calléde, J, Laraque, A, Filizola, N, Guyot, JL, Seyler, P, Fritsch, JM, Guimarães, V. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrological Processes 23:31413150.Google Scholar
Laranjeiras, TO, Naka, LN, Bechtoldt, CL, da Costa, TVV, Andretti, CB, Cerqueira, MC, de Fátima Torres, M, Rodrigues, GL, Santos, MPD, Vargas, CF, Pacheco, AMF, Sardelli, CH, Mazar-Barnett, J, Cohn-Haft, M. 2014. The avifauna of Viruá National Park Roraima reveals megadiversity in northern Amazonia. Revista Brasileira de Ornitologia 22:138171.Google Scholar
Latrubesse, EM. 2002. Evidence of Quaternary palaeohydrological changes in middle Amazônia: the Aripuanã-Roosevelt and Jiparaná fans. Z. Geomorphol 129:6172.Google Scholar
Latrubesse, EM, Ramonell, CG. 1994. A climatic model for southwestern Amazonia in last glacial times. Quaternary International 21:163169.Google Scholar
Latrubesse, EM, Nelson, BW. 2001. Evidence for Late Quaternary aeolian activity in the Roraima-Guyana Region. Catena 43:6380.Google Scholar
Ledru, MP, Ceccantini, G, Gouveia, SEM, Lopez–Sáez, JA, Pessenda, LCR, Ribeiro, AS. 2006. Millenial-scale climatic and vegetation changes in a northern Cerrado (northeast Brazil) since the Last Glacial Maximum. Quaternary Science Reviews 25:11101126.Google Scholar
Lowe, JJ, Walker, MJC, Scott, EM, Harkness, DD, Bryant, CL, Davies, SM. 2004. A coherent high-precision radiocarbon chronology for the Late-glacial sequence at Sluggan Bog Co. Antrim Northern Ireland. Journal of Quaternary Science 19:147158.Google Scholar
Macario, K, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC–UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2):325330.Google Scholar
Markgraf, V, D’Antoni, HL. 1978. Pollen Flora of Argentina. Tucson: University of Arizona Press.Google Scholar
Maslin, MA, Burns, SJ. 2000. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290:22852287.Google Scholar
Mayle, FE, Burbridge, R, Killeen, TJ. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290:22912294.Google Scholar
Mayle, FE, Power, MJ. 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Phil. Trans. R. Soc. B 363:18291838.Google Scholar
Meggers, BJ. 2007. Mid-Holocene climate and cultural dynamics in Brazil and the Guianas. In: Anderson DG, Maasch KA, Sandweiss DH, editors. Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions, p 117155.Google Scholar
Miranda, ACC, Rossetti, DF, Pessenda, LCR. 2009. Quaternary paleoenvironments and relative sea–level changes in Marajó Island (Northern Brazil): facies, δ13C δ15N and C/N. Palaeogeography Palaeoclimatology Palaeoecology 282:1931.Google Scholar
Moreira, LS, Moreira-Turcq, P, Turcq, B, Caquineau, S, Cordeiro, RC. 2012. Paleohydrological changes in an Amazonian floodplain lake: Santa Ninha Lake. Journal of Paleolimnology 48:339350.Google Scholar
Mosblech, NAS, Bush, MB, Gosling, WD, Hodell, D, Thomas, L, Van Calsteren, P, Correa-Metrio, A, Valencia, BG, Curtis, J, Van Woesik, R. 2012. North Atlantic forcing of Amazonian precipitation during the Last Ice Age. Nat. Geosci 5:817820.Google Scholar
Pessenda, LCR, Valencia, EPE, Martinelli, LA, Cerri, CC. 1996. 14C measurements in tropical soil developed on basic rocks. Radiocarbon 38(2):203208.Google Scholar
Pessenda, LCR, Gomes, BM, Aravena, R, Ribeiro, AS, Boulet, R, Gouveia, SEM. 1998a. The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondonia state southwestern Brazilian Amazon region. The Holocene 8.5:599603.Google Scholar
Pessenda, LCR, Gouveia, SEM, Aravena, R, Gomes, BM, Boulet, R, Ribeiro, AS. 1998b. 14C dating and stable carbon isotopes of soil organic matter in forest savanna boundary areas in the southern Brazilian Amazon region. Radiocarbon 40:10131022.Google Scholar
Pessenda, LCR, Gouveia, SEM, Gomes, BM, Boulet, R, Ribeiro, AS. 1998c. Studies of paleovegetation changes in the central Amazon by carbon isotopes (12C 13C 14C) of soil organic matter. Isotope techniques in the study of environmental change. Proceedings of a symposium, Vienna, April 1997. p 645–52.Google Scholar
Pessenda, LCR, Boulet, R, Aravena, R, Rosolen, V, Gouveia, SEM, Ribeiro, AS, Lamotte, M. 2001. Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest–savanna transition zone Brazilian Amazon region. The Holocene 11:250254.Google Scholar
Pessenda, LCR, Ribeiro, AS, Gouveia, SEM, Aravena, R, Boulet, R, Bendassoli, JA. 2004. Vegetation dynamics during the late Pleistocene in the Barreirinhas region Maranhão State northeastern Brazil based on carbon isotopes in soil organic matter. Quaternary Research 62:183193.CrossRefGoogle Scholar
Pessenda, LCR, Vidotto, E, De Oliveira, PE, Buso, AA, Cohen, MCL, Rossetti, D, de Ricardi-Branco, F, Bendassolli, JA. 2012. Late Quaternary vegetation and coastal environmental changes at Ilha do Cardoso mangrove southeastern Brazil. Palaeogeography Palaeoclimatology Palaeoecology 363:5768.Google Scholar
RADAMBRASIL. 1975. Departamento Nacional de Produção Mineral. Projeto Radam. Folha NA–20 Boa Vista e parte das folhas NA-21 Tumucumaque NB-20 Roraima e NB–21: geologia geomorfologia pedologia vegetação e uso potencial da terra. Rio de Janeiro: DNPM 1975. 428 p.Google Scholar
RADAMBRASIL Project. 1976. Folha NA-20 Boa Vista: geologia geomorfologia pedologia vegetação e uso potencial da terra. Departamento Nacional de Produção Mineral: Rio de Janeiro.Google Scholar
Räsänen, M, Salo, J, Kalliola, R. 1987. Fluvial perturbance in the western Amazon basin: regulation by long term sub-Andean tectonics. Science 238:13981401.Google Scholar
Reimer, P. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:18691887.Google Scholar
Rigsby, CA, Hemric, EM, Baker, PA. 2009. Late Quaternary paleohydrology of the Madre de Dios River southwestern Amazon Basin, Peru. Geomorphology 113:158172.Google Scholar
Rossetti, DF, Toledo, PM, Moraes-Santos, HM, Santos, AEA. Jr 2004. Reconstructing habitats in central Amazonia using megafauna sedimentology radiocarbon and isotope analyses. Quaternary Research 61:289300.Google Scholar
Rossetti, DF, Toledo, PM, Góes, AM. 2005. New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research 63:7889.Google Scholar
Rossetti, DF, Valeriano, MM, Goes, AM, Thales, M. 2008. Palaeodrainage on Marajó Island northern Brazil in relation to Holocene relative sea-level dynamics. The Holocene 18:0112.Google Scholar
Rossetti, DF, Souza, LSB, Prado, R, Elis, VR. 2012. Neotectonics in the northern equatorial Brazilian margin. Journal of South American Earth Sciences 37:175190.Google Scholar
Rossetti, DF, Zani, H, Cremon, EH. 2014. Fossil megafans evidenced by remote sensing in the Amazonian wetlands. Zeitschrift fur Geomorphologie 58:145161.Google Scholar
Rossetti, DF, Polizel, SP, Cohen, MCL, Pessenda, LCR. 2015. Late Pleistocene–Holocene evolution of the Doce River delta southeastern Brazil: implications for the understanding of wave-influenced deltas. Mar. Geol 367:171190.Google Scholar
Roubik, DW, Moreno, JE. 1991. Pollen and Spores of Barro Colorado Island. St. Louis, MO: Missouri Botanical Garden. 268 p.Google Scholar
Ruter, A, Arzt, J, Vavrus, S, et al. 2004. Climate and environment of the subtropical and tropical Americas (NH) in the mid-Holocene: comparison of observations. Quaternary Science Reviews 23:663679.Google Scholar
Salgado-Labouriau, M.L. 1973. Contribuição à palinologia dos cerrados. Rio de Janeiro: Academia Brasileira de Ciências. 273 p.Google Scholar
Santos, JOS, Nelson, BW, Geovannini, CA. 1993. Os campos de dunas do Pantanal Setentrional. Ciência Hoje 16(93):2225.Google Scholar
Serruya, NM. 2002. Zoneamento Ecológico Econômico da Região Central do Estado de Roraima tomo II. Volume II: Diagnóstico do Meio Biótico-Cobertura Vegetal e Áreas Alteradas. CPRM–Serviço Geológico do Brasil p. 90101.Google Scholar
Shackleton, NJ. 1988. Oxygen isotopes ice volume and sea level. Quaternary Science Reviews 6:183190.Google Scholar
Sifeddine, A, Bertrand, P, Fournier, M, Martin, L, Servant, M, Soubiès, F, Suguio, K, Turcq, B. 1994. La sédimentation organique lacustre en milieu tropical humide (Carajás Amazonie orientale Brésil): relation avec les changements climatiques au cours des 60000 dernières années. Bulletin de La Société Geologique de France 165:613621.Google Scholar
Sifeddine, A, Marint, L, Turcq, B, Volkmer-Ribeiro, C, Soubiès, F, Cordeiro, RC, Suguio, K. 2001. Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography Palaeoclimatology Palaeoecology 168:221235.Google Scholar
Souza Filho, PWM, Martins, ESF, Costa, FR. 2006. Using mangroves as a geological indicator of coastal changes in the Bragança macrotidal flat Brazilian Amazon: a remote sensing data approach. Ocean and Coastal Management 49:462475.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Suguio, K, Martin, L, Bittencourt, ACSP, Dominguez, JML, Flexor, JM, Azevedo, AEG. 1985a. Flutuações do Nível do Mar durante o Quaternário Superior ao longo do Litoral Brasileiro e suas Implicações na Sedimentação Costeira. Revista Brasileira de Geociência 15:273286.Google Scholar
ter Steege, H, Jetten, VG, Polak, AM, et al. 1993. Tropical rain forest types and soil factors in a watershed area in Guyana. Journal of Vegetation Science 4:705716.Google Scholar
Tomazelli, LJ. 1990. Contribuição ao estudo dos sistemas deposicionais Holocênicos do Nordeste da Província Costeira do Rio Grande do Sul com Ênfase no Sistema Eólico [PhD thesis]. Porto Alegre Universidade Federal do Rio Grande do Sul. 270 p.Google Scholar
Toonen, WHJ, Kleinhans, MG, Cohen, KM. 2012. Sedimentary architecture of abandoned channel fills. Earth Surf. Process. Landforms 37:459472.Google Scholar
Turney, CSM, Coope, GR, Harkness, DD, Lowe, JJ, Walker, MJC. 2000. Implications for the dating of Wisconsinan (Weichselian) Late-Glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland. Quaternary Research 53:114121.Google Scholar
Van der Hammen, T, Duivenvoorden, JF, Lips, JM, Urrego, LE, Espejo, N. 1992. The late Quaternary of the middle Caquetá area (Colombian Amazonia). Journal of Quaternary Sciences 7:4555.Google Scholar
Vedel, V, Behling, H, Cohen, MCL, Lara, RJ. 2006. Holocene mangrove dynamics and sea-level changes in Taperebal northeastern Pará State northern Brazil. Vegetation History and Archaeobotany 15:115123.Google Scholar
Veloso, HP, Rangel-Filho, ALR, Lima, JCA. 1991. Classificação da Vegetação Brasileira Adaptada a um Sistema Universal. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.Google Scholar
Vital, H, Stattegger, K, Posewang, J, Theilen, F. 1998. Lowermost Amazon River: morphology and shallow seismic characteristics. Mar. Geol 152:277294.Google Scholar
Vormisto, J, Phillips, OL, Ruokolainen, K, et al. 2000. A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography 23:349359.Google Scholar
Walker, RG. 1992. Facies facies models and modern stratigraphic concepts. In: Walker RG, James NP, editors. Facies Models—Response to Sea Level Change. Ontario: Geological Association of Canada. p 114.Google Scholar
Weng, C, Bush, MB, Athens, JS. 2002. Two histories of climate change and hydrarch succession in Ecuadorian Amazonia. Review of Paleobotany and Palynology 120:7390.Google Scholar
Weng, C, Bush, MB, Silman, MR. 2004b. An analysis of modern pollen rain on na elevational gradient in southern Peru. Journal Trop. Ecology 20:113124.Google Scholar
Wentworth, CK. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30:377392.Google Scholar
Xu, Q, Tian, F, Bunting, MJ, Li, Y, Ding, W, Cao, X, He, Z. 2012. Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian China. Quaternary Science Review 37:8191.Google Scholar
Zani, H, Rossetti, DF, Cohen, MLC, Pessenda, LCR, Cremon, EH. 2012. Influence of landscape evolution on the distribution of floristic patterns in northern Amazonia revealed by δ13C data. Journal of Quaternary Science 27:854864.Google Scholar