Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T04:57:05.536Z Has data issue: false hasContentIssue false

Developments in Radiocarbon Technologies: From the Libby Counter to Compound-Specific AMS Analyses

Published online by Cambridge University Press:  18 July 2016

Pavel P Povinec*
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, SK-84248 Bratislava, Slovakia
A E Litherland
Affiliation:
University of Toronto, IsoTrace Laboratory, Toronto, Ontario M5S 1A7, Canada
Karl F von Reden
Affiliation:
Woods Hole Oceanographic Institution, National Ocean Sciences AMS Facility, Geology and Geophysics Department, Woods Hole, Massachusetts 02543, USA
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review developments in radiocarbon measuring techniques from the Libby counter through proportional gas counters and liquid scintillation spectrometers to the more recent developments of accelerator mass spectrometry (AMS), followed by a coupling of gas chromatography with AMS for compound-specific 14C analyses. While during the first 60 yr of 14C measurements beta counting, specifically gas counting, was the dominant technique, in the future of 14C science AMS will be the dominant technology.

Type
Applications, Developments, and Historical Perspectives
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Aberth, W, Peterson, JR. 1967. Characteristics of a low energy duoplasmatron negative ion source. Review of Scientific Instruments 38:745–8.Google Scholar
Alimonti G, Borexino collaboration. 1998. Measurement of the 14C abundance in a low-background liquid scintillator. Physics Letters B 422(1–4):349–58.Google Scholar
Aller, RC, Blair, NE. 2004. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): net loss of terrestrial C and diagenetic fractionation of C isotopes. Geochimica et Cosmochimica Acta 68(8):1815–25.CrossRefGoogle Scholar
Aller, RC, Blair, NE. 2006. Carbon remineralization in the Amazon-Guianas mobile mudbelt: a sedimentary incinerator. Continental Shelf Research 26:2241–59.Google Scholar
Alvarez, LW, Cornog, R. 1939a. He3 in helium. Physical Review 56:379.Google Scholar
Alvarez, LW, Cornog, R. 1939b. Helium and hydrogen of mass 3. Physical Review 56:613.Google Scholar
Alvarez, LW. 1951. Energy doubling in dc accelerators. Review of Scientific Instruments 22:705–6.Google Scholar
Alvarez, LW. 1981. The early days of accelerator mass spectrometry. In: Henning, W, Kutschera, W, Smitherand, R, Yntema, JL, editors. Proceedings of the Second International Conference on AMS. Argonne National Laboratory, Physics Division, ANL/PHY–81-1. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-2.pdf.Google Scholar
Anbar, M. 1975. Mass Spectrometric Determination of Carbon 14. US Patent 3,885,155.Google Scholar
Anbar, M. 1978. The limitations of mass spectrometric radiocarbon dating using CN ions. In: Gove, HE, editor. Proceedings of the First Conference on Radiocarbon Dating with Accelerators. Rochester: University of Rochester. p 152–6. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-1.pdf.Google Scholar
Anderson, EC, Libby, WF. 1951. World-wide distribution of natural radiocarbon. Physical Review 81:64–9.Google Scholar
Anderson, EC, Libby, WF, Weinhouse, S, Reid, AF, Kirschenbaum, AD, Grosse, AV. 1947. Radiocarbon from cosmic radiation. Science 105(2735):576–7.CrossRefGoogle ScholarPubMed
Anderson, EC, Arnold, JR, Libby, WF. 1951. Measurements of low level radiocarbon. Review of Scientific Instruments 22:225–30.Google Scholar
Arnold, JR. 1954. Scintillation counting of radiocarbon: I. The counting method. Science 119(3083):155–7.CrossRefGoogle ScholarPubMed
Arnold, JR. 1987. Decay counting in the age of AMS. Nuclear Instruments and Methods in Physics Research B 29(1–2):424–6.Google Scholar
Arnold, JR, Libby, WF. 1949. Age determination by radiocarbon content: checks with samples of known age. Science 110(2869):678–80.CrossRefGoogle ScholarPubMed
Arpesella C, Borexino collaboration. 2008. Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data. Physical Review Letters 101:091302.CrossRefGoogle Scholar
Asi, A. 2001. Ion source modeling with Lorentz-2D. Available at http://www.integratedsoft.com/Papers/research/ICIS2001.pdf.Google Scholar
Audric, BN, Long, JVP. 1954. Use of dissolved acetylene in liquid scintillation counters for the measurement of carbon-14 of low specific activity. Nature 173(4412):992–3.CrossRefGoogle Scholar
Baker, PA, Rigsby, CA, Seltzer, GO, Fritz, SC, Lowenstein, TK, Bacher, NP, Veliz, C. 2001a. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409(6821):698701.CrossRefGoogle ScholarPubMed
Baker, PA, Seltzer, GO, Fritz, SC, Dunbar, RB, Grove, MJ, Tapia, PM, Cross, SL, Rowe, HD, Broda, JP. 2001b. The history of South American tropical precipitation for the past 25,000 years. Science 291(5504):640–3.Google Scholar
Ballard, RD, Coleman, DF, Rosenberg, GD. 2000. Further evidence of abrupt Holocene drowning of the Black Sea shelf. Marine Geology 170(3–4):253–61.Google Scholar
Bandura, DR, Baranov, VI, Litherland, AE, Tanner, SD. 2006. Gas-phase ion-molecule reactions for resolution of atomic isobars: AMS and ICP-MS perspectives. International Journal of Mass Spectrometry 255–256:312–27.Google Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004a. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–202.Google Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004b. Paleoclimate: a better radiocarbon clock. Science 303(5655):178–9.Google Scholar
Barendsen, GW. 1957. Radiocarbon dating with liquid CO2 as diluent in a scintillation solution. Review of Scientific Instruments 28:430–2.Google Scholar
Bell, CG, Hayes, FN, editors. 1958. Liquid Scintillation Counting. London: Pergamon Press.Google Scholar
Bennett, CL, Beukens, RP, Clover, MR, Elmore, D, Gove, HE, Kilius, L, Litherland, AE, Purser, KH. 1978. Radiocarbon dating with electrostatic accelerators: dating of milligram samples. Science 201(4353):345–7.Google Scholar
Bennett, WH. 1940. High Voltage Vacuum Tube. US Patent No. 2,206,558.Google Scholar
Berger, R, Suess, HE, editors. 1979. Radiocarbon Dating. Proceedings of the Ninth International Conference. Los Angeles and La Jolla 1976. Berkeley: University of California Press.Google Scholar
Berkovits, D, Boaretto, E, Hollos, G, Kutschera, W, Naaman, R, Paul, M, Vager, Z. 1989. Selective suppression of negative ions by lasers. Nuclear Instruments and Methods in Physics Research A 281(3):663–6.Google Scholar
Bertsche, KJ, Karadi, CA, Muller, RA, Paulson, GC. 1990. Detection of radiocarbon in the cyclotrino. Nuclear Instruments and Methods in Physics Research B 52(3–4):398404.CrossRefGoogle Scholar
Beukens, RP. 1992. Radiocarbon accelerator mass spectrometry: background, precision and accuracy. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon After Four Decades. An Interdisciplinary Perspective. New York: Springer Verlag. p 230–9.Google Scholar
Beukens, RP. 1993. Radiocarbon accelerator mass spectrometry: background and contamination. Nuclear Instruments and Methods in Physics Research B 79(1–4):620–3.Google Scholar
Beukens, RP, Gove, HE, Litherland, AE, Kieser, WE, Zhao, X-L. 2004. The old carbon project: how old is old? Nuclear Instruments and Methods in Physics Research B 223–224:333–8.Google Scholar
Biondi, F, Strachan, SDJ, Mensing, S, Piovesan, G. 2007. Radiocarbon analysis confirms the annual nature of sagebrush growth rings. Radiocarbon 49(3):1231–40.Google Scholar
Blackett, PMS, Occhialini, GPS. 1933. Some photographs of the tracks of penetrating radiation. Proceedings of the Royal Society A 139(839):699726.Google Scholar
Blair, NE, Leithold, EL, Ford, ST, Peeler, KA, Holmes, JC, Perkey, DW. 2003. The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochimica et Cosmochimica Acta 67(1):6373.CrossRefGoogle Scholar
Bond, G, Kromer, B, Beer, J, Muscheler, R, Evans, MN, Showers, W, Hoffmann, S, Lotti-Bond, R, Hajdas, I, Bonani, G. 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294(5549):2130–6.CrossRefGoogle ScholarPubMed
Bonner, TW, Brubaker, WM. 1936. The disintegration of nitrogen by neutrons. Physical Review 49:223–9.Google Scholar
Brannon, HR, Taggart, MS Jr, Williams, M. 1955. Proportional counting of carbon dioxide for radiocarbon dating. Review of Scientific Instruments 26:269–73.Google Scholar
Broecker, WS, Tucek, CS, Olson, EA. 1959. Radio-carbon analysis of oceanic CO2 . International Journal of Applied Radiation and Isotopes 7(1):110.Google Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Ostlund, G. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9(2):263–88.CrossRefGoogle Scholar
Bromley, DA, editor. 1974. Large electrostatic accelerators. Nuclear Instruments and Methods 122:1285.Google Scholar
Brooks, FD. 1958. In: Bell, CG, Hayes, FN, editors. Liquid Scintillation Counting. London: Pergamon. p 268.Google Scholar
Burcham, WE, Goldhaber, M. 1936. The disintegration of nitrogen by slow neutrons. Proceedings of the Cambridge Philosophical Society 32(4):632–6.CrossRefGoogle Scholar
Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320–2.Google Scholar
Burke, WH Jr, Meinschein, WG. 1955. C14 dating with a methane proportional counter. Review of Scientific Instruments 26:1137–40.Google Scholar
Bush, MB, Silman, MR, Urrego, DH. 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303(5659):827–9.CrossRefGoogle Scholar
Buynevich, IV, FitzGerald, DM, Goble, RJ. 2007. A 1500 yr record of North Atlantic storm activity based on optically dated relict beach scarps. Geology 35(6):543–6.CrossRefGoogle Scholar
Çağatay, MN, Görür, N, Polonia, A, Demirbağ, E, Saknç, M, Cormier, M-H, Capotondi, L, McHugh, C, Emre, Ö, Eriş, K. 2003. Sea-level changes and depositional environments in the İzmir Gulf, eastern Marmara Sea, during the late glacial-Holocene period. Marine Geology 202(3–4):159–73.CrossRefGoogle Scholar
Came, RE, Oppo, DW, Curry, WB. 2003. Atlantic Ocean circulation during the Younger Dryas: insights from a new Cd/Ca record from the western subtropical South Atlantic. Paleoceanography 18(4):1086, doi: 10.1029/2003PA000888.Google Scholar
Came, RE, Oppo, DW, Curry, WB, Lynch-Stieglitz, J. 2008. Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation. Paleoceanography 23, PA1217, doi: 10.1029/2007PA001450.Google Scholar
Chapman, K, editor. 1972. Proceedings of the Symposium of North East Accelerator Personnel. Tallahassee: Florida State University. (See particularly p 100–4.)Google Scholar
Charalambus, S, Goebel, K. 1963. Low level proportional counter for tritium. Nuclear Instruments and Methods 25:109–17.Google Scholar
Chen, M, Lu, X, Li, D, Liu, Y, Zhou, W, Chen, G, Shen, L, Xu, S, Zhang, Y. 2000. Minicyclotron (SMCAMS)-based accelerator mass spectrometry and real 14C measurements. Nuclear Instruments and Methods in Physics Research B 172(1–4):193200.Google Scholar
Cohen, AL, Hart, SR. 2004. Deglacial sea surface temperatures of the western tropical Pacific: a new look at old coral. Paleoceanography 19, PA4031, doi: 10.1029/2004PA001084.Google Scholar
Collon, P, Kutschera, W, Loosli, HH, Lehmann, BE, Purtschert, R, Love, A, Sampson, L, Anthony, D, Cole, D, Davids, B, Morrisey, DJ, Sherrill, BM, Steiner, M, Pardo, RC, Paul, M. 2000. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth and Planetary Science Letters 182(1):103–13.Google Scholar
Crathorn, AR. 1953. Use of an acetylene-filled counter for natural radiocarbon. Nature 172(4379):632–3.Google Scholar
Curran, SC, Angus, J, Cockroft, AL. 1949. Investigation of soft radiations by proportional counters. I. Philosophical Magazine 40:3652.Google Scholar
Currie, LA, Noakes, JE, Breiter, DN. 1978. Measurement of small radiocarbon samples: power of alternative methods for tracing atmospheric hydrocarbons. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference Los Angeles and La Jolla, 1976. Berkeley: University of California Press. p 158–75.Google Scholar
Currie, LA, Gerlach, RW, Klouda, GA, Ruegg, FC, Tompkins, GB. 1983. Miniature signals and miniature counters: accuracy assurance via microprocessors and multiparameter control techniques. Radiocarbon 25(2):553–64.Google Scholar
Damon, PE, Long, A, Grey, DC. 1966. Fluctuation of atmospheric C14 during the last six millennia. Journal of Geophysical Research 71(4):1055–63.Google Scholar
Davis, R Jr, Harmer, DS, Hoffman, KC. 1968. Search for neutrinos from the Sun. Physical Review Letters 20(21):1205–9.CrossRefGoogle Scholar
de Vries, H. 1956. The contribution of neutrons to the background of counters used for 14C age measurements. Nuclear Physics 1(6):477–9.CrossRefGoogle Scholar
de Vries, H, Barendsen, GW. 1952. A new technique for the measurement of age by radiocarbon. Physica 18:652–9.Google Scholar
de Vries, H, Barendsen, GW. 1953. Radiocarbon dating by a proportional counter filled with carbon dioxide. Physica 19:9871003.Google Scholar
Donnelly, JP, Woodruff, JD. 2007. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature 447(7143):465–8.Google Scholar
Donnelly, JP, Butler, J, Roll, S, Wengren, M, Webb, T III. 2004a. A backbarrier overwash record of intense storms from Brigantine, New Jersey. Marine Geology 210(1–4):107–21.CrossRefGoogle Scholar
Donnelly, JP, Cleary, P, Newby, P, Ettinger, R. 2004b. Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophysical Research Letters 31, L05203, doi: 10.1029/2003GL018933.Google Scholar
Drenzek, NJ, Montluçon, DB, Yunker, MB, Macdonald, RW, Eglinton, TI. 2007. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements. Marine Chemistry 103(1–2):146–62.Google Scholar
Drever, RWP, Moljk, A, Curran, SC. 1957. A proportional counter system with small wall effect. Nuclear Instruments 1:41–5.Google Scholar
Eglinton, TI, Benitez-Nelson, BC, Pearson, A, McNichol, AP, Bauer, JE, Druffel, ERM. 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277(5327):796–9.Google Scholar
Elmore, D, Kubik, PW, Tubbs, LE, Gove, HE, Teng, R, Hemmick, T, Chrunyk, B, Conard, N. 1984. The Rochester tandem accelerator mass spectrometer program. Nuclear Instruments and Methods in Physics Research B 5(2):109–16.Google Scholar
Engelkemeir, AG, Hamill, WH, Inghram, MG, Libby, WF. 1949. The half-life of radiocarbon (14C). Physical Review 75:1825–33.Google Scholar
Eriş, KK, Ryan, WBF, Çağatay, MN, Sancar, U, Lericolais, G, Ménot, G, Bard, E. 2007. The timing and evolution of the post-glacial transgression across the Sea of Marmara shelf south of Istanbul. Marine Geology 243(1–4):5776.Google Scholar
Fallon, SJ, Guilderson, TP, Brown, TA. 2007. CAMS/LLNL ion source efficiency revisited. Nuclear Instruments and Methods in Physics Research B 259(1):106–10.Google Scholar
Faltings, V. 1952. Die Messung natürlicher 14C-Aktivitäten in proportionalzähler. Naturwissenschaften 39:378–9. In German.CrossRefGoogle Scholar
Fergusson, GJ. 1955. Radiocarbon dating system. Nucleonics 13:1823.Google Scholar
Fifield, LK. 2000. Advances in AMS. Nuclear Instruments and Methods in Physics Research B 172(1–4):134–43.Google Scholar
Forstner, O, Andersson, P, Diehl, C, Golser, R, Hanstorp, D, Kutschera, W, Lindahl, A, Priller, A, Steier, P, Wallner, A. 2008. Isobar suppression in AMS using laser photodetachment. Nuclear Instruments and Methods in Physics Research B 266(19–20):4565–8.CrossRefGoogle Scholar
Geiger, H, Müller, W. 1929. Technische Bemerkungen zum Elektronenzäherohr. Zeitschrift für Physik 30:489. In German.Google Scholar
Gerlach, D, Griffin, V, Kim, S-W, Long, P, McNichol, A, Percy, D, Schneider, R, von Reden, K, Zondervan, A. 2002. Witnesses to the first 14C events from a microwave gas ion source, recorded with the NOSAMS AMS gas detector (18 January 2002).Google Scholar
Geyh, MA. 1967. Experience gathered in the construction of low-level counters. In: Radioactive Dating and Methods of Low-Level Counting. Vienna: IAEA. p 575–91.Google Scholar
Giosan, L, Donnelly, JP, Constantinescu, S, Filip, F, Ovejanu, I, Vespremeanu-Stroe, A, Vespremeanu, E, Duller, GAT. 2006. Young Danube delta documents stable Black Sea level since the middle Holocene: morphodynamic, paleogeographic, and archaeological implications. Geology 34(9):757–60.CrossRefGoogle Scholar
Gnaser, H. 1997. Formation of metastable N2 and CO anions in sputtering. Physical Review A 56(4):R251821.Google Scholar
Gnaser, H. 2008. Isotopic fractionation of sputtered anions: C and C–2 . Nuclear Instruments and Methods in Physics Research B 266(1):3743.Google Scholar
Gove, HE. 1999. From Hiroshima to the Iceman: The Development and Applications of Accelerator Mass Spectrometry. Bristol: Institute of Physics Publishing. 226 p.Google Scholar
Gregory, ST, Shea, D, Guthrie-Nichols, E. 2005. Impact of vegetation on sedimentary organic matter composition and polycyclic aromatic hydrocarbon attenuation. Environmental Science & Technology 39(14):5285–92.CrossRefGoogle ScholarPubMed
Grootes, PM. 1977. Enrichment of radiocarbon for dating samples up to 75,000 years. In: Povinec, P, Usačev, S, editors. Low-Radioactivity Measurements and Applications. Proceedings of the International Conference, High Tatras, 1975. Bratislava: Slovenské Pedagogické Nakladatestvo. p 93–7.Google Scholar
Grottoli, AG, Gille, ST, Druffel, ERM, Dunbar, RB. 2003. Decadal timescale shift in the 14C record of a central equatorial Pacific coral. Radiocarbon 45(1):91–9.Google Scholar
Hall, ET, Hedges, REM, White, NR, Hyder, HR, Sinclair, D. 1978. Plans for Van de Graaff mass spectrometry and laser enrichment of 14C at Oxford. In: Gove, HE, editor. Proceedings of the First Conference on Radiocarbon Dating with Accelerators. Rochester: University of Rochester. p 257–65. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-1.pdf.Google Scholar
Han, BX, von Reden, KF, Roberts, ML, Schneider, RJ, Hayes, JM, Jenkins, WJ. 2007. Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):111–7.CrossRefGoogle Scholar
Harbottle, G, Sayre, EV, Stoenner, RW. 1979. Carbon-14 dating of small samples by proportional counting. Science 206(4419):683–5.Google Scholar
Hellborg, R, editor. 2005. Electrostatic Accelerators: Fundamentals and Applications. Berlin: Springer. 620 p.Google Scholar
Henning, W. 1987. Accelerator mass spectrometry of the heavy elements: 36Cl to 205Pb. Philosophical Transaction of the Royal Society of London A 323(1569):8799.Google Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.Google Scholar
Hogg, A, Polach, H, Robertson, S, Noakes, J. 1991. Application of high purity synthetic quartz vials to liquid scintillation low-level 14C counting of benzene. In: Ross, H, Noakes, JE, Spaulding, JD, editors. Liquid Scintillation Counting and Organic Scintillators. Chelsea: Lewis Publishers. p 123–31.Google Scholar
Horrocks, DL. 1974. Applications of Liquid Scintillation Counting. New York: Academic Press. 346 p.Google Scholar
Houtermans, FG, Oeschger, H. 1955. Proportionszählrohr zur Messung schwacher Aktivitäten weicher -Strahlung. Helvetica Physica Acta 28:464–6. In German.Google Scholar
Hut, G, Keyser, J, Wijma, S. 1983. A multiple proportional 14C counter system for milligram-sized samples. 1983. Radiocarbon 25(2):547–52.Google Scholar
Hwang, J, Druffel, ERM. 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science 299(5608):881–4.Google Scholar
Ishikawa, J. 1995. Negative ion sources. In: Wolf, B, editor. Handbook of Ion Sources. Chapter 2, section 16. New York: CRC Press. p 289312.Google Scholar
Ivanova, EV, Murdmaa, IO, Chepalyga, AL, Cronin, TM, Pasechnik, IV, Levchenko, OV, Howe, SS, Manushkina, AV, Platonova, EA. 2007. Holocene sea-level oscillations and environmental changes on the eastern Black Sea shelf. Palaeogeography, Palaeoclimatology, Palaeoecology 246(2–4):228–59.Google Scholar
Jones, GA, McNichol, AP, von Reden, KF, Schneider, RJ. 1990. The National Ocean Sciences AMS facility at Woods Hole Oceanographic Institution. Nuclear Instruments and Methods in Physics Research B 52(3–4):278–84.Google Scholar
Jones, GA, Gagnon, AR, von Reden, KF, McNichol, AP, Schneider, RJ. 1994. High-precision AMS radiocarbon measurements of central Arctic-Ocean sea waters. Nuclear Instruments and Methods in Physics Research B 92(1–4):426–30.Google Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, McHargue, LR, Lange, TE. 2008. Accelerator mass spectrometry of long-lived light radionuclides In: Povinec, P, editor. Analysis of Environmental Radionuclides. Amsterdam: Elsevier. p 241–62.Google Scholar
Kalin, RM, Devine, JM, Long, A. 1991. Performance of small quartz vials in a low-level, high resolution liquid scintillation spectrometer. In: Ross, H, Noakes, JE, Spaulding, JD, editors. Liquid Scintillation Counting and Organic Scintillators. Chelsea: Lewis Publishers. p 471–9.Google Scholar
Kallmann, HI, Kuhn, E. 1940. Device for Generating a Beam of Ions of High Velocity. US Patent No. 2,213,140.Google Scholar
Keigwin, LD. 1996. The little ice age and medieval warm period in the Sargasso Sea. Science 274(5292):1504–8.Google Scholar
Keigwin, LD. 2004. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19(4): PA4012, doi: 10.1029/2004PA001029.Google Scholar
Keigwin, LD, Boyle, EA. 2008. Did North Atlantic overturning halt 17,000 years ago? Paleoceanography 23(1): PA1101, doi: 10.1029/2007PA001500.Google Scholar
Keigwin, LD, Pickart, RS. 1999. Slope water current over the Laurentian fan on interannual to millennial time scales. Science 286(5439):520–3.Google Scholar
Keigwin, LD, Sachs, JP, Rosenthal, Y, Boyle, EA. 2005. The 8200 year BP event in the slope water system, western subpolar North Atlantic. Paleoceanography 20(2): PA2003, doi: 10.1029/2004PA001074.Google Scholar
Keigwin, LD, Donnelly, JP, Cook, MS, Driscoll, NW, Brigham-Grette, J. 2006. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34(10):861–4.Google Scholar
Key, R. 1996. WOCE Pacific Ocean radiocarbon program. Radiocarbon 38(3):415–23.Google Scholar
Key, RM, Quay, PD, Jones, G, McNichol, AP, von Reden, KF, Schneider, RJ. 1996. WOCE AMS radiocarbon I: Pacific Ocean results (P6, P16 and P17). Radiocarbon 38(3):425518.Google Scholar
Key, RM, Quay, PD, Schlosser, P, McNichol, AP, von Reden, KF, Schneider, RJ, Elder, K, Stuiver, M, Ostlund, H. 2002. WOCE radiocarbon IV: Pacific Ocean results; P10, P13N, P14C, P18, P19 & S4P. Radiocarbon 44(1):239392.Google Scholar
Key, RM, Kozyr, A, Sabine, CL, Lee, K, Wanninkhof, R, Bullister, JL, Feely, RA, Millero, FJ, Mordy, C, Peng, TH. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18(4): GB4031, doi: 10.1029/2004GB002247.Google Scholar
Kilius, LR, Rucklidge, JC, Litherland, AE. 1987. Accelerator mass spectrometry of 129I at IsoTrace. Nuclear Instruments and Methods B 29(1–2):72–6.Google Scholar
Kim, S-W, Schneider, RJ, von Reden, KF, Hayes, JM, Wills, JSC. 2002. Test of negative ion beams from a microwave ion source with a charge exchange canal for accelerator mass spectrometry applications. Review of Scientific Instruments 73:846–8.Google Scholar
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production. Science 279(5354):1187–90.Google Scholar
Kubik, PW, Elmore, D. 1989. AMS of 41Ca using the CaF3 negative ion. Radiocarbon 31(3):324–6.Google Scholar
Kuehner, JA, Almqvist, E, Bromley, DA. 1960. In: Bromley, DA, Vogt, EW, editors. Proceedings of the 1960 International Conference on Nuclear Structure. Toronto: University of Toronto Press. p 280.Google Scholar
Kurie, FND. 1934. A new mode of disintegration induced by neutrons. Physical Review 45:904–5.Google Scholar
Kutschera, W. 2005. Progress in isotope analysis of at ultra-trace level by AMS. International Journal of Mass Spectrometry 242(2–3):145–60.CrossRefGoogle Scholar
Lal, D. 1965. In: Chatters, RM, editor. Proceedings of the Sixth International Conference Radiocarbon and Tritium Dating. Pullman, Washington, 7–11 June 1965 (Conf. 650652). p 487.Google Scholar
Laney, BH. 1971. Electronic rejection of optical crosstalk in a twin phototube scintillation counter. In: Organic Scintillator and Liquid Scintillation Counting. New York: Academic Press. p 9911003.Google Scholar
Lee, HW, Galindo-Uribarri, A, Chang, KH, Kilius, LR, Litherland, AE. 1984. The 12CH2 2+ molecule and radiocarbon dating by accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):208–10.Google Scholar
Libby, WF. 1934. Radioactivity of neodymium and samarium. Physical Review 46:196204.Google Scholar
Libby, WF. 1946. Atmospheric helium three and radiocarbon from cosmic radiation. Physical Review 69:671–2.Google Scholar
Libby, WF. 1955. Radiocarbon Dating. 2nd edition. Chicago: University of Chicago Press. 175 p.Google Scholar
Libby, WF. 1967. History of radiocarbon dating. In: Radioactive Dating and Methods of Low-Level Counting. Proceedings of the Symposium Vienna, 1967. Vienna: IAEA. p 326.Google Scholar
Libby, WF, Lee, DD. 1939. Energies of soft beta-radiations of rubidium and other bodies. Method for their determination. Physical Review 55:245–51.Google Scholar
Litherland, AE. 1962. Negative Ion Production Studies. Progress Report of the Physics Division. Atomic Energy of Canada Limited, PR-P-56, p 2.7.Google Scholar
Litherland, AE. 1978. Radiocarbon dating with accelerators. In: Gove, HE, editor. Proceedings of the First Conference on Radiocarbon Dating with Accelerators. Rochester: University of Rochester. p 70113. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-1.pdf.Google Scholar
Litherland, AE. 1984. Accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):100–8.Google Scholar
Litherland, AE, Kilius, LR. 1990. A recombinator for radiocarbon accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 52(3–4):375–7.Google Scholar
Litherland, AE, Kuehner, JA, Gove, HE, Clark, MA, Almqvist, E. 1961. Rotational bands in 20Ne. Physical Review Letters 7:98100.Google Scholar
Litherland, AE, Gove, HE, Beukens, RP, Zhao, X-L, Kieser, WE. 2005. Low-level 14C measurements and accelerator mass spectrometry. In: Cleveland, B, Ford, R, Chen, M, editors. Topical Workshop on Low Radioactivity Techniques, Conference Proceedings of the AIP. CP 785. p 4856. (Note: in the published paper there is a typographical error in line 15 of the introduction. The exponent should be 18 not 16.).Google Scholar
Litherland, AE, Tomski, I, Zhao, X-L, Cousins, LM, Doupé, JP, Javahery, G, Kieser, WE. 2007. Isobar separation at very low energy for AMS. Nuclear Instruments and Methods in Physics Research B 259(1):230–5.Google Scholar
Long, A, Kalin, RM. 1992. Radiocarbon dating in the 50,000 to 65,000 year range without isotopic enrichment. In: Povinec, P, editor. Rare Nuclear Processes. Proceedings of the 14th Europhysics Conference on Nuclear Physics. Bratislava: Veda Publishers. p 256–63.Google Scholar
Loosli, HH, Oeschger, H. 1982. Low-level gas proportional counting in an underground laboratory. In: Povinec, P, editor. Low-Level Counting. Proceedings of the 2nd International Conference Low Radioactivities High Tatras, 1980. Bratislava: Veda Publishers. Volume 1. p 117–25.Google Scholar
Loosli, HH, Möll, M, Oeschger, H, Scotterer, U. 1986. Ten years low-level counting in the underground laboratory in Bern, Switzerland. Nuclear Instruments and Methods in Physics Research B 17(5–6):402–5.Google Scholar
Lu, Z-T, Wendt, KDA. 2003. Laser-based methods for ultrasensitive trace-isotope analyses. Review of Scientific Instruments 74:1169–79.Google Scholar
Lynch-Stieglitz, J, Adkins, JF, Curry, WB, Dokken, T, Hall, IR, Herguera, JC, Hirschi, J-M, Ivanova, EV, Kissel, C, Marchal, O, Marchitto, TM, McCave, IN, McManus, JF, Mulitza, S, Ninnemann, U, Peeters, F, Yu, E-F, Zahn, R. 2007. Atlantic meridional overturning circulation during the last glacial maximum. Science 316(5821):66–9.Google Scholar
Mandalakis, M, Gustafsson, Ö, Reddy, CM, Xu, L. 2004. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area. Environmental Science & Technology 38(20):5344–9.Google Scholar
Mäntynen, P, Aikää, O, Kankainen, T, Kaihola, L. 1987. Application of pulse-shape discrimination to improve the precision of the carbon-14 gas-proportional-counting method. Applied Radiation and Isotopes 38(10):869–73.Google Scholar
Marrodán Undagoitia, T, von Feilitzsch, F, Göger-Neff, M, Hochmuth, KA, Oberauer, L, Potzel, W, Wurm, M. 2006. Low energy neutrino astronomy with the large liquid-scintillation detector LENA. Journal of Physics: Conference Series 57:283–9.Google Scholar
Matsumoto, K. 2007. Radiocarbon-based circulation age of the world oceans. Journal of Geophysical Research 112(C9): C09004.Google Scholar
McCormac, FG. 1992. Liquid scintillation counter characterization, optimization and benzene purity correction. Radiocarbon 34(1):3745.Google Scholar
McIntyre, C, Sylva, S. 2008. Gas chromatograph-combustion system and method for mass spectrometry. Provisional Patent US 61/197,047.Google Scholar
McManus, JF, Francois, R, Gherardi, J-M, Keigwin, LD, Brown-Leger, S. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–7.Google Scholar
McNichol, AP, Schneider, RJ, von Reden, KF, Gagnon, AR, Elder, KL, Key, RM, Quay, PD. 2000. Ten years after the WOCE AMS radiocarbon program. Nuclear Instruments and Methods in Physics Research B 172(1–4):479–84.Google Scholar
Middleton, R, Adams, CT. 1974. A close to universal negative ion source. Nuclear Instruments and Methods 118(2):329–36.Google Scholar
Middleton, R, Klein, J. 1999. Production of metastable negative ions in a caesium sputter source: verification of the existence of N2 and CO . Physical Review A 60(5):3786–99.CrossRefGoogle Scholar
Mollenhauer, G, Eglinton, TI, Ohkouchi, N, Schneider, RR, Müller, PJ, Grootes, PM, Rullkötter, J. 2003. Asynchronous alkenone and foraminifera records from the Benguela Upwelling System. Geochimica et Cosmochimica Acta 67(12):2157–71.Google Scholar
Mollenhauer, G, Kienast, M, Lamy, F, Meggers, H, Schneider, R, Hayes, JM, Eglinton, TI. 2005a. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments. Paleoceanography 20(1): PA1016, doi: 10.1029/2004PA001103.Google Scholar
Mollenhauer, G, Montluçon, D, Eglinton, TI. 2005b. Radiocarbon dating of alkenones from marine sediments: II. Assessment of carbon process blanks. Radiocarbon 47(3):413–24.Google Scholar
Mollenhauer, G, McManus, JF, Benthien, A, Müller, PJ, Eglinton, TI. 2006. Rapid lateral particle transport in the Argentine Basin: molecular 14C and 230Thxs evidence. Deep-Sea Research Part I 53(7):1224–43.Google Scholar
Mook, WG. 1983. International comparison of proportional gas counters for 14C activity measurements. Radiocarbon 25(2):475–84.Google Scholar
Mościcki, W, Zastawny, A. 1977. New proportional counter assembly in Gliwice 14C laboratory. In: Povinec, P, Usačev, S, editors. Low-Radioactivity Measurements and Applications. Proceedings of the International Conference, High Tatras, 1975. Bratislava: Slovenské Pedagogické Nakladatestvo. p 91–2.Google Scholar
Muller, RA. 1977. Radioisotope dating with a cyclotron. Science 196(4289):489–94.Google Scholar
Muller, RA. 1978. Radioisotope dating with the LBL 88” Cyclotron. In: Gove, HE, editor. Proceedings of the First Conference on Radiocarbon Dating with Accelerators. Rochester: University of Rochester. p 33–7. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-1.pdf.Google Scholar
Muller, RA, Alvarez, LW, Holley, WR, Stephenson, ER. 1977. Quarks with unit charge: a search for anomalous hydrogen. Science 196(4289):521–52.Google Scholar
Muller, RA, Tans, PP, Mast, TS, Welch, JJ. 1981. Mass spectrometry with a very small cyclotron. In: Henning, W, Kutschera, W, Smitherand, R, Yntema, JL, editors. Proceedings of the Second International Conference on AMS. Argonne National Laboratory, Physics Division, ANL/PHY–81-1. p 342–5. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-2.pdf.Google Scholar
Münnich, KO, Vogel, JC. 1958. Durch Atomexplosionen erzeugter Radiokohlenstoff in der Atmosphäre. Naturwissenschaften 45(14):327–9. In German.Google Scholar
Murnick, DE, Dogru, O, Ilkmen, E. 2008. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Analytical Chemistry 80(13):4820–4.Google Scholar
Naegler, T, Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research 111(D12): doi: 10.1029/2005JD006758.Google Scholar
Nelson, DE, Korteling, RG, Stott, WR. 1977. Carbon-14: direct detection at natural concentrations. Science 198(4316):507–8.Google Scholar
Noakes, JE, Isbell, AF, Stipp, JJ, Hood, DW. 1963. Benzene synthesis by low temperature catalysis for radiocarbon dating. Geochimica et Cosmochimica Acta 27(7):797804.Google Scholar
Noakes, JE, Kim, SM, Stipp, JJ. 1965. Chemical and counting advances in liquid scintillation radiocarbon dating. In: Chatters, RM, editor. Proceedings of the Sixth International Conference Radiocarbon and Tritium Dating. Pullman, Washington, 7–11 June 1965 (Conf. 650652). p 6898.Google Scholar
Noakes, JE, Neary, MP, Spaulding, JD. 1973. Tritium measurement with a new liquid scintillation counter. Nuclear Instruments and Methods 109(1):177–87.Google Scholar
Nydal, R. 1962. Proportional counting technique for radiocarbon measurements. Review of Scientific Instruments 33:1313–20.Google Scholar
Nydal, R, Lovseth, K. 1965. Distribution of radiocarbon from nuclear tests. Nature 206(4988):1029–31.Google Scholar
Nydal, R, Sigmond, RS. 1957. Radiocarbon dating in Trondheim. Applied Scientific Research B 6:393400.Google Scholar
Nydal, R, Gulliksen, S, Lövseth, K. 1977. Proportional counters and shielding for low-level gas counting. In: Povinec, P, Usačev, S, editors. Low-Radioactivity Measurements and Applications. Proceedings of the International Conference Bratislava, 1975. Bratislava: Slovenské Pedagogické Nakladatestvo. p 1322.Google Scholar
Oeschger, H. 1963. Low level counting methods. In: Radioactive Dating. Vienna: IAEA. p 13.Google Scholar
Oeschger, H, Loosli, HH. 1977. New developments in sampling and low level counting of natural radioactivity. In: Povinec, P, Usačev, S, editors. Low-Radioactivity Measurements and Applications. Proceedings of the International Conference High Tatras, 1975. Bratislava: Slovenské Pedagogické Nakladatestvo. p 1322.Google Scholar
Oeschger, H, Wahlen, M. 1975. Low-level counting techniques. Annual Review of Nuclear Science 25:423–63.Google Scholar
Ohkouchi, N, Eglinton, T, Hayes, J. 2003. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies. Radiocarbon 45(1):1724.Google Scholar
Oliphant, ML, Harteck, P, Rutherford, E. 1934. Transmutation effects observed with heavy hydrogen. Nature 133(3359):413.Google Scholar
Olsson, IU. 1957. A C14 dating station using the CO2 proportional counting method. Arkiv för Fysik 13:3760.Google Scholar
Olsson, IU, editor. 1970. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. New York: John Wiley & Sons.Google Scholar
Olsson, IU, Karlen, I, Turnbull, AH, Prosser, NJD. 1962. A determination of the half-life of 14C with a proportional counter. Arkiv för Fysik 22:237–55.Google Scholar
Oppo, DW, McManus, JF, Cullen, JL. 2003. Palaeo-oceanography: deepwater variability in the Holocene epoch. Nature 422(6929):277–8.Google Scholar
Östlund, HG. 1957. Stockholm natural radiocarbon measurements I. Science 126(3272):493–7.Google Scholar
Otlet, BI, Huxtable, G, Evans, GV, Humphreys, DG, Short, TD, Conchie, SJ. 1983. Development and operation of the Harwell small counter facility for the measurement of 14C in very small samples. Radiocarbon 25(2):565–75.Google Scholar
Patrut, A, von Reden, KF, Lowy, DA, Alberts, AA, Pohlman, JW, Wittmann, R, Gerlach, D, Xu, L, Mitchell, CS. 2007. Radiocarbon dating of a very large African baobab. Tree Physiology 27(11):1569–74.Google Scholar
Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochemical Cycles 18(2): GB2022, doi: 10.1029/2003GB002211.Google Scholar
Pearson, A, McNichol, AP, Schneider, RJ, von Reden, KF, Zheng, Y. 1998. Microscale AMS 14C measurement at NOSAMS. Radiocarbon 40(1):6175.Google Scholar
Pearson, A, McNichol, AP, Benitez-Nelson, BC, Hayes, JM, Eglinton, TI. 2001. Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ14C analysis. Geochimica et Cosmochimica Acta 65(18):3123–37.Google Scholar
Pearson, GW. 1979. Precise 14C measurement by liquid scintillation counting. Radiocarbon 21(1):121.Google Scholar
Plastino, W, Kaihola, L. 2006. Radiocarbon measurement by liquid scintillation spectrometry at the Gran Sasso National Laboratory. In: Povinec, PP, Sanchez-Cabeza, JA, editors. Radionuclides in the Environments. Proceedings of the International Conference on Isotopes in Environmental Studies Monaco 2004. Amsterdam: Elsevier. p 520–8.Google Scholar
Polach, H, Calf, G, Harkness, D, Hogg, A, Kaihola, L, Robertson, S. 1988. Performance of new technology liquid scintillation counters for 14C dating. Nuclear Geophysics 2:75–9.Google Scholar
Povinec, P. 1972a. Very low background proportional counter for tritium dating. Nuclear Instruments and Methods 101(3):613–4.Google Scholar
Povinec, P. 1972b. Preparation of methane gas for proportional 3H and 14C counters. Radiochemical and Radioanalytical Letters 9:127–35.Google Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H measurements. Nuclear Instruments and Methods 156(3):441–6.Google Scholar
Povinec, P. 1979. A study of proportional counter optimisation for long-term counting. Nuclear Instruments and Methods 163(2–3):363–8.Google Scholar
Povinec, P. 1980. Proportional chambers for low level counting. Nuclear Instruments and Methods 176(1–2):111–7.Google Scholar
Povinec, P. 1981. Simultaneous activity and background measurement by the same detector. International Journal of Applied Radiation and Isotopes 32(10):729–32.Google Scholar
Povinec, P. 1992. 14C gas counting: Is there still a future? Radiocarbon 34(3):406–13.Google Scholar
Povinec, P, Šáro, Š, Chudý, M, Šeliga, M. 1968. The rapid method of radiocarbon counting in the atmosphere. International Journal of Applied Radiation and Isotopes 19(12):877–81.Google Scholar
Povinec, PP, Betti, M, Jull, AJT, Vojtyla, P. 2008. New isotope technologies in environmental physics. Acta Physica Slovaca 58:1154.Google Scholar
Pringle, RW, Turchinetz, W, Funt, BL. 1955. Liquid scintillation techniques for radiocarbon dating. Review of Scientific Instruments 26:859–65.Google Scholar
Pringle, RW, Turchinetz, W, Funt, BL, Danyluk, SS. 1957. Radiocarbon age estimates obtained by an improved liquid scintillation technique. Science 125(3237):6970.Google Scholar
Purser, KH. 1977. An Ultra-Sensitive Mass Spectrometry Apparatus. Filed 1 March 1976, US Patent No. 4,037,100.Google Scholar
Purser, KH, Handley, PR. 1978. A carbon-14 dating system. In: Gove, HE, editor. Proceedings of the First Conference on Radiocarbon Dating with Accelerators. Rochester: University of Rochester. p 165–86. Available at http://homepage.univie.ac.at/walter.kutschera/AMS/AMS-1.pdf.Google Scholar
Purser, KH, Liebert, RB, Litherland, AE, Beukens, RP, Gove, HE, Bennett, CL, Clover, MR, Sondheim, W. 1977. An attempt to detect stable N ions from a sputter ion source and some implications of the results for the design of tandems for ultra-sensitive carbon analysis. Revue de Physique Appliquée 12:1487–92.Google Scholar
Raeth, CH, Sevold, BJ, Pederson, CN. 1951. A multipleanode anticoincidence ring counter. Review of Scientific Instruments 22:461–3.Google Scholar
Rafter, TA, Fergusson, GJ. 1957. The atom bomb effect – recent increase in the carbon-14 content of the atmosphere, biosphere and surface waters of the ocean. New Zealand Journal of Science and Technology B 38:871–3.Google Scholar
Rasmussen, TL, Oppo, DW, Thomsen, E, Lehman, SJ. 2003. Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18(1): doi: 10.1029/2001PA000736.Google Scholar
Reddy, CM, Eglinton, TI, Hounshell, A, White, HK, Xu, L, Gaines, RB, Frysinger, GS. 2002a. The west Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environmental Science & Technology 36(22):4754–60.Google Scholar
Reddy, CM, Pearson, A, Xu, L, McNichol, AP, Benner, BA Jr, Wise, SA, Klouda, GA, Currie, LA, Eglinton, TI. 2002b. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples. Environmental Science & Technology 36(8):1774–82.Google Scholar
Reddy, CM, Xu, L, O'Neil, GW, Nelson, RK, Eglinton, TI, Faulkner, DJ, Norstrom, R, Ross, PS, Tittlemier, SA. 2004. Radiocarbon evidence for a naturally produced, bioaccumulating halogenated organic compound. Environmental Science & Technology 38(7):1992–7.Google Scholar
Reid, AF, Dunning, JR, Weinhouse, S, Grosse, AV. 1946. Half-life of 14C. Physical Review 70:431.Google Scholar
Reynolds, GT, Harrison, FB, Salvini, G. 1950. Liquid scintillation counters. Physical Review 78:488.Google Scholar
Roberts, ML, Schneider, RJ, von Reden, KF, Wills, JSC, Han, BX, Hayes, JM, Rosenheim, BE, Jenkins, WJ. 2007. Progress on a gas-accepting ion source for continuous-flow accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 259(1):83–7.Google Scholar
Robinson, LF, Adkins, JF, Keigwin, LD, Southon, J, Fernandez, DP, Wang, S-L, Scheirer, DS. 2005. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310(5753):1469–73.Google Scholar
Rosenheim, BE, Swart, PK. 2007. Caribbean sclerosponge radiocarbon measurements re-interpreted in terms of U/Th age models. Nuclear Instruments and Methods in Physics Research B 259(1):474–8.Google Scholar
Ruben, S, Kamen, MD. 1941. Long-lived radioactive carbon: 14C. Physical Review 59:349–54.Google Scholar
Russell, JM, Johnson, TC. 2007. Little ice age drought in equatorial Africa: intertropical convergence zone migrations and El Niño–Southern oscillation variability. Geology 35(1):21–4.Google Scholar
Russell, JM, Johnson, TC, Talbot, MR. 2003. A 725 yr cycle in the climate of central Africa during the late Holocene. Geology 31(8):677–80.Google Scholar
Rutherford, E. 1937. The search for the isotopes of hydrogen and helium of mass 3. Nature 140(3538):303–5.Google Scholar
Schlosser, P, Kromer, B, Ekwurzel, B, Bonisch, G, McNichol, A, Schneider, R, von Reden, K, Östlund, HG, Swift, JH. 1997. The first trans-Arctic 14C section: comparison of the mean ages of the deep waters in the Eurasian and Canadian basins of the Arctic Ocean. Nuclear Instruments and Methods in Physics Research B 123(1–4):431–7.Google Scholar
Schneider, RJ, Hayes, JM, von Reden, KF, McNichol, AP, Eglinton, TI, Wills, JSC. 1998. Target preparation for continuous flow accelerator mass spectrometry. Radiocarbon 40(1):95102.Google Scholar
Schnitzer, RW, Aberth, H, Anbar, M. 1975. In: Proceedings of the 23rd ASMS Annual Conference on Mass Spectrometry and Allied Topics. p 479–81.Google Scholar
Schoch, H, Bruns, M, Münnich, KO, Münnich, M. 1980. A multicounter system for high precision carbon-14 measurements. Radiocarbon 22(2):442–7.Google Scholar
Schwartzschild, AZ, Thieberger, P, Cumming, JB. 1977. Bulletin of the American Physical Society 22:94.Google Scholar
Scott, EM, editor. 2003. The Third International Radiocarbon Intercomparison (TIRI) and the Fourth International Radiocarbon Intercomparison (FIRI), 1990–2002. Results, analyses, and conclusions. Radiocarbon 45(2):135408.Google Scholar
Skog, G. 2007. The single stage AMS machine at Lund University: status report. Nuclear Instruments and Methods in Physics Research B 259(1):16.Google Scholar
Slater, GF, White, HK, Eglinton, TI, Reddy, CM. 2005. Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environmental Science & Technology 39(8):2552–8.Google Scholar
Slater, GF, Nelson, RK, Kile, BM, Reddy, CM. 2006. Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis. Organic Geochemistry 37:981–9.Google Scholar
Smittenberg, RH, Baas, M, Green, MJ, Hopmans, EC, Schouten, S, Sinninghe Damsté, JS. 2005. Pre- and post-industrial environmental changes as revealed by the biogeochemical sedimentary record of Drammensfjord, Norway. Marine Geology 214(1–3):177200.Google Scholar
Southon, JR, Nelson, DE, Vogel, JS. 1990. Injection systems for AMS: simultaneous versus sequential. Nuclear Instruments and Methods in Physics Research B 52(3–4):370–4.Google Scholar
Srdoč, D, Planinič, J, Obelić, B. 1977. A multiwire proportional counter for tritium and radiocarbon measurements. In: Povinec, P, Usačev, S, editors. Low-Radioactivity Measurements and Applications. Proceedings of the International Conference, High Tatras, 1975. Bratislava: Slovenské Pedagogické Nakladatestvo. p 6770.Google Scholar
Srdoč, D, Obelić, B, Horvatinčić, N. 1983. Radiocarbon dating of millimole-sized gaseous samples. Radiocarbon 25(2):485–92.Google Scholar
Starik, LE, Arslanov, KA, Zharkov, AP. 1961. Radiokhimia 2:67 Google Scholar
Starik, LE, Arslanov, KA, Klener, IR. 1963. Radiokhimia 5:198.Google Scholar
Stephenson, EJ, Alvarez, LW, Clark, DJ, Gough, RA, Holley, RA, Jain, WR, Muller, RA. 1977. Bulletin of the American Physical Society 22:579.Google Scholar
Stoenner, RW, Schaeffer, OA, Davis, R Jr. 1960. Meteorites as space probes for testing the spatial constancy of cosmic radiation. Journal of Geophysical Research 65(10):3025–34.Google Scholar
Stuiver, M. 1978. Carbon-14 dating: a comparison of beta and ion counting. Science 202(4370):881–3.Google Scholar
Stuiver, M, van der Plicht, J, editors. 1998. INTCAL98 Calibration Issue. Radiocarbon 40(3):1041–164.Google Scholar
Stuiver, M, Robinson, SW, Yang, IC. 1979. 14C dating to 60,000 years BP with proportional counters. In: Berger, R, Suess, HE, editors. Radiocarbon Dating. Proceedings of the Ninth International Conference Los Angeles and La Jolla, 1976. Berkeley: University of California Press. p 202–15.Google Scholar
Stuiver, M, Long, A, Kra, RS, editors. 1993. Calibration 1993. Radiocarbon 35(1):1244.Google Scholar
Suess, HE. 1954. Natural radiocarbon measurements by acetylene counting. Science 120(3105):57.Google Scholar
Suess, HE. 1965. Secular variations of the cosmic-ray-produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research 70(23):5937–52.Google Scholar
Suess, HE. 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22(2):200–9.Google Scholar
Suess, HE. 1986. Secular variations of cosmogenic 14C on Earth: their discoveries and interpretation. Radiocarbon 28(2A):259–65.Google Scholar
Suter, M, Balzer, R, Bonani, G, Wölfli, W. 1984. A fast beam pulsing system for isotope ratio measurements. Nuclear Instruments and Methods in Physics Research B 5(2):242–6.Google Scholar
Suter, M, Döbeli, M, Grajcar, M, Müller, A, Stocker, M, Sun, G, Synal, H-A, Wacker, L. 2007. Advances in particle identification in AMS at low energies. Nuclear Instruments and Methods in Physics Research B 259(1):165–72.Google Scholar
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21, GB2015, doi: 10.1029/2006GB002784.Google Scholar
Synal, H-A, Jacob, S, Suter, M. 2000. The PSI/ETH small radiocarbon system. Nuclear Instruments and Methods in Physics Research B 172(1–4):17.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.Google Scholar
Tamers, MA. 1965. Routine carbon-14 dating using liquid scintillation techniques. Acta Cientifica Venezolana 16:156–62.Google Scholar
Tamers, MA, Pearson, FJ. 1965. Isotope effect in the benzene synthesis for radiocarbon dating. Nature 205(4977):1205–7.Google Scholar
Tamers, MA, Stipp, JJ, Collier, J. 1961. High sensitivity detection of naturally occurring radiocarbon—I Chemistry of the counting sample. Geochimica et Cosmochimica Acta 24(3–4):266–76.Google Scholar
Tanner, RL, Parkhurst, WJ, McNichol, AP. 2004. Fossil sources of ambient aerosol carbon based on 14C measurements. Aerosol Science and Technology 38(12):133–9.Google Scholar
Tanner, SD, Baranov, VI, Bandura, DM. 2002. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta B 57(9):1361–452.Google Scholar
Tans, PP, de Jong, AFM, Mook, WG, Hut, G. 1982. High accuracy carbon-14 counting and the application to the radiocarbon calibration curve. In: Povinec, P, editor. Proceedings of the 2nd International Conference on Low-Level Counting. Volume 1. Bratislava: Veda Publishers. p 155–69.Google Scholar
Teuten, EL, Xu, L, Reddy, CM. 2005. Two abundant bioaccumulated halogenated compounds are natural products. Science 307(5711):917–20.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE. 1987. Catalyst and binder effects in the use of filamentous graphite for AMS. Nuclear Instruments and Methods in Physics Research B 29(1–2):50–6.Google Scholar
von Reden, KF, McNichol, AP, Pearson, A, Schneider, RJ. 1998. 14C AMS measurements of <100 μg samples with a high-current system. Radiocarbon 40(1):247–53.Google Scholar
von Reden, KF, Peden, JC, Schneider, RJ, Bellino, M, Donoghue, J, Elder, KL, Gagnon, AR, Long, P, McNichol, AP, Morin, T, Stuart, D, Hayes, JM, Key, RM. 1999. High-precision measurements of 14C as a circulation tracer in the Pacific, Indian, and Southern oceans with accelerator mass spectrometry. AIP Conference Proceedings 473:410–21.Google Scholar
von Reden, K, Roberts, M, Han, B, Schneider, R, Wills, J. 2007. Searching for a suitable gas ion source for 14C accelerator mass spectrometry. AIP Conference Proceedings 925(1):341–5.Google Scholar
von Reden, KF, Roberts, ML, Jenkins, WJ, Rosenheim, BE, McNichol, AP, Schneider, RJ. 2008. Software development for continuous-gas-flow AMS. Nuclear Instruments and Methods in Physics Research B 266(10):2233–7.Google Scholar
Wakeham, SG, McNichol, AP, Kostka, JE, Pease, TK. 2006. Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments. Geochimica et Cosmochimica Acta 70(7):1761–71.Google Scholar
Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97(C5):7373–82.Google Scholar
Watson, JT, Roe, DK, Selenkow, HA. 1965. Iodine-129 as a “non-radioactive” tracer. Radiation Research 26:159–63.Google Scholar
Weidman, C, Jones, G. 1993. A shell-derived time history of bomb 14C on Georges Bank and its Labrador Sea implications. Journal of Geophysical Research 98(C8):14,57788.Google Scholar
Weinman, JA, Cameron, JR. 1956. Negative hydrogen ion source. Review of Scientific Instruments 27:288–93.Google Scholar
White, HK, Reddy, CM, Eglinton, TI. 2005. Isotopic constraints on the fate of petroleum residues sequestered in salt marsh sediments. Environmental Science & Technology 39(8):2545–51.Google Scholar
Zencak, Z, Klanova, J, Holoubek, I, Gustafsson, Ö. 2007. Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis. Environmental Science & Technology 41(11):3850–5.Google Scholar