Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:03:34.619Z Has data issue: false hasContentIssue false

Development of 14C Dating of Mortars at ETH Zurich

Published online by Cambridge University Press:  02 June 2020

Irka Hajdas*
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093Zurich, Switzerland
Mantana Maurer
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093Zurich, Switzerland
Maria Belen Röttig
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093Zurich, Switzerland
*
*Corresponding author. Email: [email protected].

Abstract

The ages of mortars and plaster can help reveal the history of monuments, their construction, or restoration times. However, these anthropogenic carbonates pose a challenge when it comes to separation of the atmospheric radiocarbon (14C) signal of the CO2 fixed in the mortar at the time of consolidation, i.e., the time of binder formation. The variety and heterogeneity of mortars require individual assessments of each sample and 14C results. Here we present our current preparation method and summarize experience based on results collected during the last 20 years of mortar dating at the ETH laboratory.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Ambers, J. 1987. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon-dates for lime mortars. Journal of Archaeological Science 14:569576.CrossRefGoogle Scholar
Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content—checks with samples of known age. Science 110:678680.CrossRefGoogle ScholarPubMed
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225:937938.CrossRefGoogle ScholarPubMed
Caroselli, M, Hajdas, I, Cassitti, P. 2020. Radiocarbon dating of dolomitic mortars from the convent of Saint John, Müstair (Switzerland): First results. Radiocarbon 62. This issue.CrossRefGoogle Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3:195201.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, A, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, et al. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-Comparison Study (MoDIS). Radiocarbon 59:18451858.CrossRefGoogle Scholar
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54:897903.CrossRefGoogle Scholar
Hajdas, I, Maurer, M, Röttig, MB. Forthcoming. 14C dating of mortar from ruins of an early medieval church Hohenrätien GR, Switzerland. Geochronometria.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, A, Michalska, D, Hajdas, I, Hueglin, S, et al. 2017. Mortar dating methodology: assessing recurrent issues and needs for further research. Radiocarbon 59:18591871.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, A, von Konow, T, Rud, N, Sveinbjornsdottir, A. 1997. AMS C-14 dating of lime mortar. In: Edgren, T, editor. Proceedings of the VII Nordic Conference on the Application of Scientific Methods in Archaeology. p. 214215. Iskos.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, A, Lindroos, A, Sveinbjornsdottir, AE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52:171204.CrossRefGoogle Scholar
Hormes, J, Xiao, Q, Hu, Y, Bläuer, C, Diekamp, A, Goll, J, Bovenkamp, G-L. 2015. Mortar samples from the Abbey of Saint John at Müstair: a combined spatially resolved X-ray fluorescence and X-ray absorption (XANES) study. Journal of Analytical Atomic Spectrometry 30:702706.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, A, Brasken, M, Sveinbjornsdottir, A. 2007. Mortar dating using AMS 14C and sequential dissolution: Examples from medieval, non-hydraulic lime mortars from the Aland Islands, SW Finland. Radiocarbon 49:4767.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brock, F, Sonck-Koota, P, Pehkonen, P, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. In: Ringbom, Å, Hohlfelder, R, editors. Building Roma Aeterna. Current research on roman mortar and concrete. Commentationes Humanarum Litterarum. Societas Scientiarium Fennica, Rome, 27–29 March 2008. p. 214230.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83:20382045.CrossRefGoogle ScholarPubMed
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294:246251.CrossRefGoogle Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:431439.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59:18911906.CrossRefGoogle Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: The case of the medieval Shayzar citadel, Syria. Radiocarbon 55:514525.CrossRefGoogle Scholar
Olsson, IU. 2009. Radiocarbon dating history: Early days, questions, and problems met. Radiocarbon 51:143.CrossRefGoogle Scholar
Ramsey, CB. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337360.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Brock, F. 2011. Mortar dating and Roman pozzolana, results and interpretations. In: Ringbom, Å and Hohlfelder, R, editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum. Societas Scientiarium Fennica, Rome, 27–29 March 2008. p. 187208.Google Scholar
Ringbom, A, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: Learning from experience. Radiocarbon 56:619635.CrossRefGoogle Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43:271273.CrossRefGoogle Scholar
Stuiver, M, Smith, C, Chatters, R, Olson, E. 1965. Radiocarbon dating of ancient mortar and plaster. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Washington (DC): U.S. Department of Commerce. p. 338341.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259:713.CrossRefGoogle Scholar
Van Strydonck, M, Aramburu, J, Fernández Martínez, A, Alvarez Jurado-Figueroa, M, Boudin, M, De Mulder, G. 2017. Radiocarbon dating of the Son Pellisser lime burial (Calvià, Mallorca). Journal of Archaeological Science: Reports 11:471479.Google Scholar
Van Strydonck, M, Boudin, M, Decq, L, Van den Brande, T, Borms, H, Ramis, D, De Mulder, G. 2011. AMS 14C dating of Balearic lime burials. Radiocarbon 53:563574.CrossRefGoogle Scholar
Van Strydonck, MJY, Dupas, M, Dauchotdehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of delta-13C in mortar dating. Radiocarbon 28:702710.CrossRefGoogle Scholar
Van Strydonck, MJY, Dupas, M, Keppens, E. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31:610618.CrossRefGoogle Scholar
Van Strydonck, MJY, van der Borg, K, Dejong, AFM, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 34:873879.CrossRefGoogle Scholar